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1 PanoHead

Why PanoHead Over Existing Approaches? Various works have explored implicit volu-
metric representations of the human head. GRAM [3] utilizes structured manifolds, while
[2] employs Tri-Plane representations. PanoHead [1] further advances this by leveraging
Tri-Grid feature representations. As illustrated in Figure 1, methods trained solely on frontal
views struggle to accurately capture the complete 360° geometry of the human head, posing
a challenge for precise hair volume estimation. Figures 1(a) and 1(b) depict the geometric
reconstructions obtained by [3] and [2], respectively. PanoHead [1] overcomes this limi-
tation by utilizing tri-grid feature representation 7, enabling the reconstruction of the full
360° head geometry, as shown in Figure 1(c). However, PanoHead is trained to predict
the color and density distribution within a volumetric representation by design, enabling
view-consistent neural radiance field rendering. This radiance-based implicit representation,
modeled as a volumetric density field, is optimized for rendering but suboptimal for surface
extraction. Therefore, we propose to distill knowledge from PanoHead by training ¥(.) to
directly predict signed distances. By leveraging the signed distance function (SDF), the sur-
face can be naturally extracted as the zero-level set or iso-surface, providing a more precise
and well-defined geometry. Moreover, we extend ¥(.) to also predict semantic masks and 3D
orientations for every point on the iso-surface of the predicted SDF, enabling a more struc-
tured understanding of hair geometry. This comprehensive approach ensures that PanoHair
captures both the geometry and semantics necessary for high-fidelity hair modeling.

The ability of tri-grid representations to capture full-head geometry, as demonstrated
by PanoHead [1], forms the foundation of PanoHair. Figure 1 qualitatively compares head
geometries obtained from various 3D-aware neural representations. Generative Manifolds
[3] and Tri-planes [2] primarily reconstruct frontal geometries (Figure 1(a), (b)). In contrast,
we leverage knowledge distillation from PanoHead to learn full-head SDFs (Figure 1(d)),
whereas PanoHead represents faces as density distributions (Figure 1(c)).
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Figure 1: The geometric shapes extracted from implicit representations learned using exist-
ing methods: (a) GRAM [3], (b) Tri-Planes [2], (c) PanoHead [1], and (d) Ours.

2 Loss Functions

In the main paper, we define our loss function £ as presented in Equation 1
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Here, A represents the weights assigned to each loss term, and L,,.,; denotes the orientation
loss, which we now describe in detail.

2.1 Tangential Loss.

Since the SDF S encodes signed distances, its gradient at the surface points xg points in
the direction of the outward surface normal. We impose tangential loss for orientations og
predicted at surface points as defined in equation 2.
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2.2 Multi-view Orientation Projection Loss.

We generate k multi-view outputs from PanoHead using cameras ‘Ce,y and render the corre-
sponding super-resolved images I along with their Gabor orientation maps Ip. For clarity,
we adopt the notation ‘X, where the superscript i on the top left of a variable X indicates its
association with the i-th view. To ensure consistency across views, we synthesize these k
views so that each image overlaps by more than 70% with the first view. For surface points
Oxg identified in the first view, we project them into all k camera views, including the first
view itself, and infer their ground-truth Gabor orientations from Ip. Gabor orientation maps
represent local image structures by capturing dominant edge directions. However, they ex-
hibit directional ambiguity because an orientation vector 0 and its opposite direction 6 + 7
produce the same response. This means that for a predicted orientation °Oyp its true coun-
terpart Ip can be any of the Ip,lp+ 7, and Ip — 7. Hence, for projected predicted orientations
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Figure 2: For the image (a) generated from a latent code, (b) shows estimated Gabor orienta-
tions, while (c) highlights high-confidence (> 0.2) orientations in the hair region. Predicted
orientations for hair region points are shown in (d), and screen-projected locations of pixels
belonging to hair semantics in (e).

Loss Lian Lproj Lian Lproj (F ad )
Multi-view | v v | 0.16 0.31
Multi-view X v 0.20 0.34
Single-view | v v | 0.18 0.42
Single-view X v 0.26 0.48

Table 1: Impact of training PanoHair with and without multiple-views in consideration

90,p in the first view, we impose projection loss as in Equation 3. This enables a multi-view
consistent optimization of the orientation vector.
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Finally, the total orientation loss is defined as in equation 4.
Lorient = A Lian + As Lproj 4

We train PanoHair for 1 million iterations, sampling latent codes z from a normal distribution
p2(0,1), using the loss functions defined in Equation 1. For multi-view projection loss, we
randomly sample k = 3 multiple overlapping views. The weighting parameters are set as
follows: A; = le —4 (decaying to O after 20K iterations), A, = 1, A3 = 10, and A4 = A5 = 10.
Training is conducted on an NVIDIA RTX-4090 GPU and takes approximately three days.
Figure 2 shows predicted orientations compared with ground-truth Gabor orientations along
with M,p. In Table 1, we present an ablation study analyzing the impact of training PanoHair
with a single-view orientation projection loss versus a multi-view projection loss. For each
setting, we also evaluate the effect of omitting the tangential loss. The results show that the
model trained with both the tangential and multi-view projection losses achieves the best
performance, yielding the lowest angular error when projecting predicted orientations onto
the ground truth. Moreover, the predicted orientations remain more tangential to the surface
of the hair mesh, which is desirable. The evaluation is conducted by randomly sampling 100
latent codes.
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