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Abstract—In this work, we present a method for precisely
segmenting individual petals within flower images. Petal seg-
mentation is challenging due to its intricate structures and
substantial variations among petals across diverse flower species.
Moreover, frequent occlusions and the uniformity in appearance
and shape of petals within a single flower add complexity to
the segmentation process, making it error-prone. We introduce a
generalized approach to segment petal instances for any flower
species. We first detect contours for the outermost set of petals
and segment them out from the Corolla. We iteratively repeat
this process until we reach the floral centre. To this end, we
developed a robust contour detection technique and employed a
prompt-based segmentation model for petal segmentation. Our
results demonstrate the effectiveness of prompts generated by our
approach in facilitating efficient petal segmentation. Additionally,
we have developed a manual supervision tool, FloraSeg, tailored
for segmenting petals in cases where flowers exhibit many petals
with complex geometries. Our experiments demonstrate that the
fully automatic segmentation method achieves results comparable
to those obtained through manual human annotation. Addition-
ally, incorporating a few manual cues from the FloraSeg tool
into our approach consistently yields precise petal segmentation,
aligning closely with manually annotated outcomes. We present
results from a wide range of flower species to emphasize the
effectiveness of the proposed approach in the petal segmentation
task. This work has significant applications in developmental
biology, particularly in advancing our understanding of flower
development and conducting structural phenotyping of flowers.

I. INTRODUCTION

Modelling flowers is a challenging task in the field of
computer vision and graphics due to their complex geometry
and diverse appearance. The primary challenge in flower
modelling arises from the frequent occlusion among petals.
The closely packed arrangement of visually similar flower
petals poses a challenge in segmenting them individually.
Petal segmentation is essential as it offers valuable insights
into their geometries, significantly aiding in modelling the
overall geometry and appearance of the entire flower. In this
work, we present a method for precisely segmenting individual
petals given an image containing a flower. We also estimate
other important geometrical attributes associated with flower
structure.

In the fields of computer vision and graphics related to
flowers, we observe that the predominant emphasis has been
on the detection and segmentation of entire flowers. Petal
segmentation, on the other hand, has received considerably
less attention. The absence of annotated datasets for petal
segmentation poses a barrier to supervised learning. Our
approach seeks to address this gap in research by focusing on
the challenge of petal segmentation, leveraging both geometric
and visual aspects of individual petals in flowers. To this
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Fig. 1. Essential biological terminology relevant to flower anatomy. In (a),
major components contributing to flower structure are depicted, and in (b),
geometric aspects related to individual petals or sepals are illustrated.

end, we automate the existing interactive class-agnostic seg-
mentation model through the implementation of our proposed
PoPs Algorithm, which stands for Pluck out the Petals. Our
systematic approach involves the iterative extraction of indi-
vidual flower petals, initiating from the outermost blossomed
layer and progressing towards the floral centre. Depending on
various factors discussed later, the proposed fully automated
approach may result in noisy outputs. As a solution, we have
developed a tool called FloraSeg designed to facilitate manual
intervention, ultimately leading to precise petal segmentation.

To the author’s knowledge, this paper is the first to introduce
a generalized approach for petal segmentation across diverse
flower species. The key contributions of our work are:

• We present POPs, an iterative method to segment individ-
ual flower petals, starting from the outermost blossomed
layer towards the inner-most.

• We introduce an interactive tool named FloraSeg, which
facilitates manual supervision in conjunction with POPs,
thereby enhancing the petal segmentation process.

II. RELATED WORK

Interactive Segmentation. Object segmentation is a well-
studied and highly-researched area in computer vision. Nu-
merous studies have explored different aspects of segmenta-
tion, including interactive segmentation [15], [9], [21], Edge
detection [1], Semantic Segmentation [16], [3], [25], Panoptic
Segmentation [8], [24], [4], etc. Most current approaches typi-
cally employ cross-entropy loss or its variants in training deep
neural networks, which constrains the model to a predefined
number of classes. Several class-agnostic methods, such as
[10], [22], have been introduced to overcome these limitations.
However, the effectiveness of these approaches is closely tied
to the training data they rely on.
Flower Detection and Segmentation. Numerous studies have
explored the segmentation and detection of complete flowers
within a given image. For flower detection, [5], [11] utilize
fine-tuning of existing object detection baselines such as [7],
[19]. In the case of bi-level co-segmentation, as introduced



in [2], foreground extraction relies on using the conventional
GrabCut technique [15]. In more recent works, such as [17],
[18], the focus has shifted to the detection and segmentation
of specific flower species, namely, Apples, Grapes, and Roses,
respectively. These methods leverage deep neural architectures
for their tasks.
Petal Detection and Segmentation. While there has been
prior research on segmenting entire flowers in the given image,
relatively limited attention has been devoted to segmenting
individual petals. It’s important to note that the petal detection
method proposed in [13] encounters challenges when deal-
ing with flowers containing many petals or occlusions. As
petal segmentation yields significant geometric and textural
information essential for 3D flower modelling, [23] takes
a manual approach by specifying the central positions of
each petal as initialization to guide the segmentation process.
However, their data-driven petal modelling approach utilizes
3D information and leverages known depth information to
enhance petal segmentation.

III. METHODOLOGY

A. Background

Vividly coloured flowers have evolved to attract animal
pollinators, primarily insects and birds, as outlined in [20].
A flower is primarily composed of multiple petals and sepals.
Petals of flowers exhibit a diverse range of colours, shapes, and
sizes, usually forming a circular or whorled pattern around the
flower’s reproductive centre. In contrast, sepals are primarily
found when the flower is in bud form and has not yet fully
opened. As the flower fully blooms, sepals often retract away
from the centre, revealing the petals and the reproductive struc-
tures within. This is depicted in Figure 1(a). These components
collectively contribute to the flower’s structure and function.
The collection of all petals is called Corolla, and the collection
of all sepals is called Calyx. In some cases, petals and sepals
exhibit similar appearances, leading to the term tepal used to
describe these indistinguishable floral parts. The orientation of
a petal, extending from the base (proximal) to the tip (distal), is
referred to as the Proximal-distal axis. Likewise, the axis from
the centre (medial) to the side (lateral) is termed the Medio-
lateral axis of the petal. The terms Adaxial and Abaxial denote
the upper and lower surfaces of the petal, respectively. Figure
1(b) illustrates these axes.

B. Approach

Our approach consists of two key modules: Iterative Petal
Segmentation using the POPs Algorithm and Manual Super-
vision utilizing the FloraSeg tool.

1) Pluck Out Petals (POPs) Algorithm: We propose a fully
automatic approach to segment petals given a flower image.
The POPs algorithm employs an iterative strategy to segment
the outermost layer of petals, progressively moving towards
the floral centre, as illustrated in Figure 3.
Foreground Extraction. Given that our primary goal is
petal segmentation, we assume that flower detection and
segmentation have already been performed on the provided

Fig. 2. For an input flower image (a), our approach generates curated prompts
(b) for precise petal segmentation (c). The POPs algorithm accurately places
a point on each petal, specifically at the centre along the line connecting the
valley points. This identified point acts as a prompt, guiding the segmentation
of the respective petals. In conjunction with Figure 3, we show the output of
our algorithm on a Bellis perennis flower (Common Daisy).

image. Assuming that the input image contains a well-focused
flower, we streamline the entire flower segmentation using
depth thresholding on a depth map obtained by a pre-trained
MiDas network [14]. Depending on the specific input image,
appropriately applying depth thresholding with Dτ yields the
necessary foreground mask, where the foreground corresponds
to the flower for petal segmentation. For challenging images,
our tool FloraSeg, integrated with Segment Anything [9],
provides the necessary mask through manual prompts provided
via mouse input. This manual intervention ensures the accurate
segmentation required for the task. Figure 3 illustrates the
foreground extraction process.
Contour Detection and Refinement. Given an image I and a
mask M that defines the flower region (where M equals 1 for
the flower region and 0 for the background), we first identify
all the pixels that collectively constitute the largest possible
contour, denoted as X , on the mask. We then perform curve-
fitting on the pixel set X yielding a closed curve equation
denoted as C employing [6]. Subsequently, we calculate a set
of N equidistant points along the curve C such that the spacing
between any two consecutive points n ∈ N is uniform. To
enhance the smoothness of the curve C, we apply a smoothing
operation using Gaussian weighting. This operation considers
2n neighbours of the i-th point, as detailed in Equation 1.

Cs(i) =

∑i+n
j=i−n w(j) · C(j)∑i+n

j=i−n w(j)
(1)

Here, w(j) = e−
(j−i)2

2r2 , and parameter r, governs extent of
smoothing. The identified curve corresponds to the outermost-
blossomed layer of the flower, as illustrated by a light green
outline in Figure 2(b). The local extremes along this curve
represent a petal’s tip or valley.
Automatic Prompt Generation. Given the curve Cs com-
posed of N points, we identify all possible local extrema
E = T ∪ V , which is a collection of all maxima points T
and minima V on the curve Cs. We first estimate curvature K
for the closed curve Cs, such that κi ∈ K is the curvature of
i-th point on curve Cs. The set of all local maxima constitutes
the tip (distal) points of the petals and is represented as
T = {(xi, yi) | κi > κi−1 and κi > κi+1}. Similarly, we
calculate all the local minima points constituting the valleys
of the petals, V = {(xi, yi) | κi < κi−1 and κi < κi+1}. We
then filter the obtained extrema with a curvature prominence



Fig. 3. Overview of the proposed approach: Initially, we achieve binary segmentation by applying depth-map thresholding to the input image, with the
foreground representing the flower region. We estimate monocular depth using a pre-trained MiDas [14] network. The POPs Algorithm is then employed
iteratively to segment petals from the outermost-blossomed layer. At each iteration, the identified petals are masked, and the next outermost-blossomed layer
becomes the focus for the subsequent iteration. This iterative process continues until the entire flower region has been successfully segmented into individual
petals. The automated prompts generated by POPs can be utilized by any prompt-based segmentation technique to achieve the segmentation. We employ
the Segment-Anything model [9] in this paper for illustration. The depth-based flower segmentation and the POPs Algorithm are designed to accommodate
manual intervention through the FloraSeg tool, enabling improved performance and accurate segmentation. The results depicted in this figure demonstrate a
fully automated approach with No manual supervision.

of value (κτ ) representing the minimum curvature required for
the detected extrema to be considered as maxima or minima.
Beginning from a randomly chosen initial point p0 ∈ V , we ar-
range all points p ∈ E in order of the arc length traversed along
curve Cs, between points p0 and p. Following the intuitive
understanding that consecutive tips or valleys cannot occur
on a curve, we enhance the refinement of points in T and V
by eliminating such consecutive points and retaining only the
one with the maximum prominent curvature. Now, all possible
triplets in E denoted as P = {(pi−1, pi, pi+1) | pi−1, pi+1 ∈
V, pi ∈ T } signify a petal of the flower in outermost-
blossomed layer represented by curve Cs. In Figure 2(b), the
detected petals are depicted, where red points represent the
distal points (T ) of the petal, and pink points represent the
valley points (V) of the petal. For each petal p ∈ P , we
determine a point that lies inside it by calculating the bisecting
point of the line connecting its two valleys, depicted as a black
outlined circle in Figure 2(b). This midpoint point serves as
our prompt for segmentation. Let B denote the set of all these
points inside the petal, such that bi ∈ B is a point inside the
petal pi ∈ P . Due to the similar appearances of all petals
in a flower in terms of colour and shape, segmenting petal
pi ∈ P using only one prompt bi ∈ B can lead to errors.
To enhance our prompts, we consider the 1-neighbourhood of
each petal, where petal pi ∈ P is labelled as 1 (foreground),
and neighbouring petals pi−1, pi+1 ∈ P are labelled as 0
(background). Consequently, for petal pi ∈ P , our extended
prompt is Bpi = {bi−1, bi, bi+1} ∈ B with corresponding
labels Lpi

= {0, 1, 0}.
Prompt based Petal Segmentation. Utilizing a set of prompts
B and corresponding labels L for all petals in P , we em-
ploy prompt-based segmentation using the Segment Anything
model as described in [9]. For more details about this prompt-

based segmentation model, we direct readers to refer to [9].
Note that B and L are generated automatically by our POPs
algorithm, which ensures a fully automated process. However,
this fully automated process may occasionally lead to inaccu-
rate petal segmentation for more complex flower structures. To
address this issue, we expand the set of prompts used in the
segmentation model [9] by incorporating manual prompts Q
and labels A. We update Bpi as Bpi = Bpi ∪Qpi and Lpi as
Lpi = Lpi ∪Api , where Qpi ∈ Q and Api ∈ A denote manual
prompts and labels, respectively, for the i-th petal pi ∈ P .

Iterative Plucking out the Petals. Given a set of prompts
B and labels L for all detected petals P , we obtain the
segmentation mask for the outermost blossomed layer of
the flower. In subsequent iterations, we update the binary
mask M using the petal segmentation mask obtained for the
outermost-blossomed layer. This exposes the next layer of
petals as the new outermost layer, allowing us to repeat the
segmentation process iteratively until the entire foreground in
M is segmented out, as illustrated in Figure 4.

2) FloraSeg Tool: The FloraSeg tool streamlines manual
supervision in two crucial steps employed by PoPs to achieve
accurate petal segmentation: foreground extraction and the
input of manual prompts for incorrectly segmented petals.
In cases where the binary mask M generation using depth
thresholding is unsatisfactory, FloraSeg provides interactive
segmentation capabilities, enabling users to extract the fore-
ground region representing the flower accurately. Furthermore,
in the case of unsatisfactory segmentation for petal pi ∈ P ,
the automated prompts Bpi and labels Lpi generated by the
POPs Algorithm are expanded. This extension involves the
incorporation of manual prompts Qpi and labels Api

, as
discussed previously, achieved through a mouse.



Fig. 4. For a given flower image, we find the binary mask M representing the flower region as foreground. Subsequently, we iteratively segment the petals
starting from the outermost blossomed layer and gradually move inwards until the entire foreground M is segmented.

Fig. 5. For a provided flower image (a) and its corresponding foreground mask (b), the influence of the curvature threshold κτ on the identification of petal
tip (distal) points T and valleys V is demonstrated. In (c) and (e), tips and valleys are highlighted with red and pink points, respectively. When multiple
extrema are detected on a single petal, resulting in the generation of multiple segments as depicted in (f) and (g), we merge the segmented masks if the
overlapping between them surpasses a predefined threshold value. The final segmented outputs are presented in (d) and (h) for both cases.

IV. RESULTS AND DISCUSSIONS

We assess the proposed methodology using a diverse range
of flowers categorized in the Oxford 102 category flower
dataset [12]. This dataset includes flowers with varying degrees
of simplicity and complexity in appearance and structure.
Figure 6 displays qualitative results obtained through the
fully automated POPs algorithm and refinements after manual
interventions facilitated by the FloraSeg tool. Table I pro-
vides a comparison between the total number of petals (|P|)
segmented by the POPs algorithm and the count performed
manually. The table presents quantitative data for the flowers
depicted in Figure 6, maintaining the same row order. The set
Q comprises all prompts manually provided by the FloraSeg
tool, contributing to the segmentation refinement. Dτ denotes
the depth threshold utilized to extract the foreground for the
corresponding flowers.
Effect of Curvature Threshold. Ideally, we aim for one tip
point and two valleys per petal, but achieving this consistently
is challenging due to diverse petal shapes. In Figure 5(c) and
5(e), extrema points are shown for curvature thresholds of
κτ = 0.02 and κτ = 0.05. A lower threshold, like κτ = 0.02,
results in more extrema points on a single petal. When multiple
extrema points appear on a single petal, our prompt labelling
scheme assigns both foreground and background labels to
the same petal, resulting in the generation of multiple masks
for that petal, as illustrated in Figure 5(f) and 5(g). This
phenomenon is especially pronounced in flowers characterized
by highly irregular petal boundaries, which do not exhibit a
distinct triangular structure. We implement a mask-merging
process to enhance the robustness of petal segmentation and
address this ambiguity. Segmentation masks are merged if
their intersection with others exceeds a specified threshold µτ .
The merging of masks enhances the robustness of the POPs
approach, making it more resilient in scenarios where prompt

TABLE I
QUANTITATIVE COMPARISON BETWEEN THE TOTAL NUMBER OF PETALS

BY PROPOSED APPROACH WITH THE COUNT PERFORMED MANUALLY

Flower Image POPs FloraSeg Human Ann.
Dτ #Petals |P| #Iters |Q| #Petals #Petals

Nelumbo N. 0.62 23 4 3 28 27
Rosa R. 0.7 16 3 4 19 19

Bulbasaur H 0.78 8 2 1 8 5
Nelumbo N. 0.78 15 2 3 17 16

Dahlia P. 0.78 117 8 6 112 >110
Gerbera J. 0.78 34 2 3 37 37
Nigella D. 0.62 11 2 2 9 8

Cyclamen G. 0.78 7 1 1 7 5
Dimorphotheca E. 0.7 33 (18+15) 4 1 34 (18+16) (32) 17+15

generation is ambiguous. Figure 5 illustrates the merging of
multiple petal masks from Figure 5(f) and 5(h) into a unified
mask displayed in Figure 5(h). It is noteworthy that the final
outputs in Figure 5(d) and 5(e) are nearly identical, even
though Figure 5(d) was generated with more accurate prompts.

In our experimental evaluations, we determined empirically
that a curvature threshold of κτ = 0.05 and a merging
threshold of µτ = 80% yield satisfactory performance across
diverse flower structures.

V. CONCLUSION

The proposed method, known as POPs (Pluck Out the
Petals), introduces an iterative approach to segmenting indi-
vidual flower petals, starting from the outermost blossomed
layer towards the innermost. This technique relies on detecting
extrema, namely the distal (tip) and valley points of the petals,
which act as prompts for segmentation. Additionally, the Flo-
raSeg tool has been developed to facilitate manual supervision,
enhancing the precision of petal segmentation in intricate
flower structures. The effectiveness of the segmentation is
validated by demonstrating its accuracy compared to human-
performed annotations. This research holds significant impli-
cations for developmental biology, offering valuable insights



Fig. 6. The second column shows the foreground mask obtained through
depth thresholding for a flower image. The third column depicts the iterative
segmentation of flower petals using the POPs Algorithm. In the fourth column,
refined results are presented with the aid of manual prompts from the FloraSeg
tool. Changes made after and before manual prompts are marked with the
symbol ▲ (Zooming in is recommended for better visibility).

into flower development and enabling structural phenotyping
of flowers. Furthermore, The work contributes to a deeper
geometric understanding of petal arrangement in flowers,
showcasing the considerable potential for applications in 2D
and 3D modelling tasks within the realm of computer graphics.
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