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ABSTRACT

We introduce GMOT-Mamba, a novel Mamba-based
model prediction framework for Generic Multiple Ob-
ject Tracking (GMOT) in video sequences. Our ap-
proach features a Weighted Feature Pooling (WFP)
layer, which processes encoded target states, and an
innovative encoder-decoder architecture that leverages
Vision-Mamba (ViM) to predict filter weights. We train
our model on combinations of large-scale datasets to
capture strong priors and discriminative features nec-
essary for generic object tracking. Through extensive
experiments and ablation studies, we demonstrate the
effectiveness of our approach, showcasing its competitive
performance against state-of-the-art GMOT methods
while outperforming SOT methods in both accuracy
and inference speed. Our findings underscore the poten-
tial of Mamba for enhancing model prediction in visual
tracking applications.

Index Terms— Generic Object Tracking, Vision
Mamba, State Space Models, Multiple Object Tracking.

1. INTRODUCTION

Visual object tracking is one of the fundamental prob-
lems in computer vision. The task focuses on determin-
ing the state of a target object throughout each frame of
a video sequence, starting from a given initial location.
Traditionally, tracking tasks are approached by draw-
ing on techniques from object detection [1], segmenta-
tion [2], and discriminative correlation filtering (DCF)
[3, 4, 5]. Recent developments in the field are extend-
ing capabilities to track multiple generic objects simul-
taneously. Recent developments in tracking are expand-
ing the capabilities to track multiple generic objects si-
multaneously. Although there is a rich history of re-
search in this area, most Generic Object Tracking (GOT)
methods and benchmarks have concentrated on tracking
a single object in a video, leading to the introduction
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of the term Single Object Tracking (SOT). Neverthe-
less, GOT extends beyond single-object tracking; track-
ing multiple objects simultaneously can improve the ro-
bustness of the tracker through combined reasoning. Ad-
ditionally, Generic Multiple Object Tracking (GMOT)
approaches significantly reduce computational costs by
utilizing shared components rather than employing sep-
arate Single Object Tracking (SOT) methods for each
target.

Among the current approaches for generic object
tracking, DCF-based methods have achieved consider-
able success. These methods learn a target model by
optimizing an objective function that incorporates both
foreground and background information from previous
frames, enabling practical global reasoning during model
learning. In parallel, Transformers have emerged as pow-
erful tools for providing strong global reasoning across
multiple frames, capturing prior information through self
and cross-attention mechanisms. As a result, numerous
studies have successfully utilized Vision Transformers
for tracking tasks [6]. More recent research [5, 4] has
explored the integration of learned priors into the DCF
framework, moving beyond traditional methods that
rely solely on minimizing an objective based on previous
frames by leveraging the capabilities of Transformers.

In this work, we aim to leverage the powerful capa-
bilities of Mamba [7], a time-variant state space model
(SSM). Mamba employs a selective scanning mechanism
similar to the attention mechanisms used in Transform-
ers and has demonstrated improved inference efficiency
and reduced computational complexity. Studies employ-
ing Mamba for vision tasks have demonstrated better
capabilities to capture richer temporal and global con-
text when compared to Transformers while achieving
nearly linear complexity during inference. We pro-
pose a Mamba-based Model Prediction framework for
Generic Multiple Object Tracking and demonstrate that
our approach, incorporating Mamba, achieves improved
performance over conventional vision backbones. Addi-
tionally, we provide a comprehensive comparison with



Fig. 1. The existing generalized model prediction framework used by discriminative correlation filtering-based
trackers is illustrated in (a), compared to the proposed GMOT-Mamba in (b), where we utilize Vision-Mamba as
a foundational component to learning target model weights. Additionally, we extend single object tracking (SOT)
to multiple object tracking (MOT) by predicting individual target model weights, each specific to the object to be
tracked simultaneously.

Transformer-based methods to evaluate the impact and
advantages of integrating Mamba in this context.
Contributions. In summary, our contributions are:

• We propose a Mamba-based Model Prediction
framework for Generic Multiple Object Tracking
and demonstrate its competitive performance in
target model prediction.

• We introduce a Weighted Feature Pooling (WFP)
Layer for processing encoded target states of mul-
tiple objects, along with an encoder-decoder archi-
tecture that utilizes Vision-Mamba to predict tar-
get model weights.

• We perform extensive ablation studies and a thor-
ough comparison with Transformer-based methods
to assess the impact and benefits of integrating
Mamba in the context of model prediction-based
tracking.

2. RELATED WORK

Visual Object Tracking. Object tracking is a funda-
mental and extensively studied task in computer vision.
Siamese tracking methods [8] have gained popularity for
their simplicity and speed. More recently, DCF-based
approaches [3, 5, 4] have emerged and become widely
adopted. These trackers work by solving an optimization
problem to estimate filter weights that effectively differ-
entiate the target from other objects and the background.
Over the years, research efforts have primarily focused
on two distinct task definitions: Generic Object Track-
ing (GOT) [9, 10] and Multiple Object Tracking (MOT)
[11]. Most MOT trackers utilize semantic class informa-
tion and employ a tracking-by-detection approach, while
most GOT-based methods are mainly explored in single
object tracking (SOT) settings. In this work, we take a
step towards tracking multiple generic objects simultane-
ously by expanding on a DCF-based tracking framework.

Fig. 2. Main building blocks of the proposed GMOT-
Mamba architecture. In (a), we demonstrate the cal-
culation of Target State Encodings, initialized using a
bounding box in LTRB representation, ϕloc, along with
a Gaussian map centered on the bounding box’s center,
ϕloc. (b) ViM Block. (c) presents a high-level overview
of the Mamba-based model prediction network, which
leverages Vision-Mamba (ViM). Specifically, we imple-
ment the ViM block following [12] and adopt the efficient
selective scanning approach from [7].

Baseline Architectures for Tracking. Traditional
Siamese architectures, while effective at capturing se-
mantic context, struggle to generalize to out-of-distribution
objects typical in Generic Object Tracking. With the
rise of Transformers and their strong ability to model
global context and capture robust priors, Vision Trans-
formers have been directly applied to tracking tasks [6].
These have been further enhanced by integrating them
with DCF-based methods [5, 3, 4] and meta-learning
techniques [2]. Recently, with the advances in Struc-



tured State Space (S4) models and their effectiveness in
sequential modeling, these models have been integrated
into various vision tasks [13, 12]. However, limited focus
has been on applying these models specifically to track-
ing. This work uses Mamba as the baseline architecture
to develop a weight prediction model and thoroughly
evaluate state space models’ effectiveness in tracking
tasks.

3. BACKGROUND

We begin with an overview of existing model predictors
and the key principles of Mamba, followed by a detailed
explanation of our proposed approach.
Mamba. The structured state space models (S4) [14]
and Mamba, a selective state space model [7], have re-
cently emerged as a promising class of architectures for
sequence modeling. SSMs transform an input sequence
x(t) ∈ R into an output sequence y(t) ∈ R through a hid-
den latent state h(t) ∈ RN . The discretized S4 models
can be represented as recurrent formulation: yt = Cht,
where ht = Āht−1 + B̄xt or through global convolution:
y = x ∗ K̄, where K̄ = (CB̄, CAB, . . . , CAkB, . . . ).

Ā = exp(∆A) B̄ = (∆A)−1(exp(∆A) − I) · ∆B (1)

Mamba incorporates a selection mechanism into S4 mod-
els by making the parameters (∆, B, C) input-dependent
through a series of linear layers [7]. This input depen-
dence transforms the traditionally linear-time invariant
S4 models into time-variant models, which means that
state space models can no longer be parallelized using
the global convolution approach discussed earlier. We
leverage the selection mechanism introduced by [7] to
overcome the limitations of LTI models and utilize their
hardware-aware state expansion implementation of se-
lective scan to mitigate the computational bottlenecks
arising from the time-variant nature of Mamba.
Discriminative Model Prediction. These approaches,
illustrated in Figure 1(a), learn a target model from
train-frames Strain to localize object in the test-frame
Stest. A widely adopted formulation by these approaches
is to solve an optimization problem such that the target
model produces the desired target state yi ∈ Y given
training-frames Strain ∈ {(xi, yi)}k

i=1. Here, xi ∈ X
are deep feature maps of the i-th input frame, and k
is a total number of training frames. The optimization
problem is defined in Equation 2.

w = arg min
w

∑
(x,y)∈Strain

f(τ(w̄; x), y) + λr(w̄) (2)

Here, we seek to optimize for w by minimizing error
measured by function f between the target model’s out-
put τ(w̄; x) and ground-truth labels y. The term r(w̄)
represents the regularization weighted by parameter λ.

4. METHODOLOGY

4.1. GMOT-Mamba: Mamba-Based Model Pre-
diction Network

Target state encodings. Given the training frames
Strain, we encode the bounding boxes of all m targets
in xywh format using the LTRB representation, where
each ϕi

box ∈ RH×W ×4. These encodings are subsequently
passed through a series of MLPs, projecting them into
a higher-dimensional space, denoted as k. Additionally,
for each target object, we represent its location with a
Gaussian map, ϕi

loc ∈ RH×W , centered on the bounding
box’s center. We adopt a similar encoding formulation
as presented in [5, 4] to enable simultaneous tracking of
multiple objects. To develop a tracker capable of track-
ing m objects, we construct a pool of learnable embed-
dings, ϵfg ∈ Rm×k. The final encoding for the i-th object
in Strain is then defined in Equation 3.

f = X +
m∑

i=0
ϵi

fg · ϕi
loc +

m∑
i=0

ϵi
fg · MLP(ϕi

box) (3)

Here, X ∈ RHf ×Wf ×k is a high dimensional feature map
of the training frame extracted from the backbone net-
work ResNet-50. Additionally, we incorporate test-frame
features into the encoding as ftest = xtest + ϵtest, where
ϵtest is a learnable token, similar to ϵfg. A visual repre-
sentation of target state encoding estimation is shown in
Figure 2(a).
Vision Mamba (ViM). We expand the main compo-
nents of GMOT-Mamba, illustrated in Figure 1 in a gen-
eralized fashion with a more detailed depiction provided
in Figure 2. The original Mamba block proposed by
[7] is designed for 1-D sequences and can not be em-
ployed for vision-related tasks directly. However, simi-
lar to Vision Transformers (ViT) [15], the Mamba block
can be adapted for images with modifications [12], as
shown in Figure 2(b). This involves transforming the
image space into flattened image patches. For addi-
tional details on the ViM architecture, please refer to
[12]. In our approach, the target state encoding in Equa-
tion 3 represents a flattened pixel feature representation,
where f ∈ RHf ·Wf ×k, and serves as input to the initial
ViM block of the encoder branch, as shown in Figure
2(c). Simultaneously, the decoder branch receives a zero-
initialized weight matrix ξ̄, which is processed by another
set of ViM blocks and fused with the encoder branch
features using the WFP Layer. Starting with ξ̄ = 0m×k,
our model prediction network learns the model weights ξ
from encodings, incorporating data-driven learned priors
that traditional DCF trackers lack.
Weighted Feature Pooling Layer. We propose the
Weighted Feature Pooling (WFP) Layer, which consists
of a single Xavier-initialized learnable transformation



Fig. 3. Tracking results using our proposed approach on validation split sequences of LaGOT. Each frame shown
is at least 200 frames apart from the previous one. The last row displays a failure case, and sub-optimal tracking
is obtained where the target object either exits the frame or becomes occluded. For better clarity, zoom-in is
recommended. Tracked instances are colored with the same color boxes across frames.

matrix, W ∈ RHf ·Wf ×m. The WFP layer maps the
output from the ViM blocks of the encoder module to
the space of ξ, i.e., it transforms from RHf ·Wf ×d to
Rm×d. Here, d represents a high-dimensional space at
a certain network depth. The transformed input-aware
and target-state aware features are then combined to
decoder ViM outputs through an addition operation, as
shown in Figure 2(c).

Box Regression and Target Localization. After es-
timating the target model weights ξ from the decoder
module for filtering, we adopt neural architecture for the
Box-Regressor and localizer modules and approach as
presented in [4, 5] for target localization and bounding
box regression. The key difference is that rather than
applying filtering on the low-resolution output from the
Mamba-encoder block, we use a Pyramidal Feature Fu-
sion Network [16] first to obtain high-resolution features
XH . We use the same ξ as weights for both localization
filtering and box-regression filtering, i.e., ξ = ξloc = ξbox.
The filtering operation for localizer defined as ϕi

loc =
ξi

loc ∗ XH and for box regression as ϕi
box = ξi

box ∗ XH.

Loss Functions To supervise our network, we employ
two losses, specifically for target localization and bound-

ing box regression. For the ground truth bounding box
annotation of object i in a frame, we first generate ϕi

loc

as a Gaussian map centered on the bounding box. A lo-
calization loss [3, 4] is applied between ϕi

loc and the map
predicted by the localizer, ϕ̂i

loc, for the i-th object. If
only n instances are tracked out of m possible tracklets
in a given training iteration, the target scores for the re-
maining m − n embeddings should produce low values.
Based on this, we define the localization loss in Equation
4. For the bounding box, we utilize IoU Loss [17] for pre-
dictions corresponding to n targets and ignore others. In
our implementation, we use a pool of m = 10 embeddings
to supervise our network in tracking a maximum of ten
objects simultaneously.

Lloc = Σn
i=0Lfocal(ϕ̂i

loc, ϕi
loc) + Σm

i=nLfocal(ϕ̂i
loc, 0) (4)

5. RESULTS AND DISCUSSION

Datasets. To train GMOT-Mamba for generic multi-
ple object tracking, we use a combination of large-scale
SOT and MOT datasets, including LaSOT [18], GOT-
10k [19], TAO [20], and COCO-context [21]. Among
these, TAO and COCO-context provide annotations for



Table 1. Comparison with state-of-the-art methods
Tracker Model LaGOT LaSOT

F1 Suc. HOTA Precision Suc.
GMOT TaMOS [4] 0.634 63.8 62.2 74.8 76.9
GSOT ToMP-50 [5] 0.612 60.2 59.4 73.1 75.5
GSOT DiMP [3] 0.578 57.4 56.6 63.9 65.1
GSOT KeepTrack [22] 0.614 60.8 59.3 73.2 75.8
GSOT MixFormer [23] 0.621 62.3 61.2 73.7 76.3
MOT QD-Track [24] 0.187 20.7 22.8 29.1 30.7
MOT OV-Track [25] 0.143 13.7 20.8 25.3 26.4

GMOT Ours 0.618 61.7 59.8 73.2 76.2

Table 2. Inference (FPS) comparison with Model Pre-
diction Methods

Method Obj. (n) = 1 Obj. (n) = 3 Obj. (n) = 5 Obj. (n) = 10
DiMP[3] 37.2 18.6 7.44 3.72
ToMP[5] 39.6 19.8 7.92 3.96

TaMOS[4] 21.7 19.7 18.4 14.3
Ours 23.4 21.6 19.9 15.4

multiple instances. Since COCO-context is an image-
based dataset, we apply random translations and rota-
tions to the frames, simulating synthetic video for train-
ing. LaSOT and GOT-10k offer annotations for single
object tracking. Since supervision needs to be robust for
k objects where 1 ≤ k ≤ m, training on a mixture of
datasets is crucial. The LaGOT validation benchmark,
introduced by [4], extends LaSOT by providing anno-
tations for multiple instances within the videos. For
GMOT validation, we utilize 100 sequences from La-
SOT, averaging 2500 frames per video, with correspond-
ing annotations provided by LaGOT. Additionally, we
use same 100 sequences with original annotations of La-
SOT for evaluating SOT metrics.
Training Details. We sample three frames from the
video sequence sampled uniformly across all datasets
above. The first two frames are designated training
frames to generate target state encodings, while predic-
tions are made on the remaining frame, which serves as
the test frame. In each epoch, 50K videos are sampled
uniformly from all datasets, and the network is trained
on NVIDIA GeForce RTX 4090 GPUs for 80 epochs.
SOTA Comparisons We evaluate our approach against
several existing state-of-the-art methods, including Ta-
MOS [4], ToMP [5], DiMP [3], KeepTrack [22], Mix-
Former [23], QD-Track [24], and OV-Track [25]. Among
these, TaMOS is a Generic-MOT tracker, while QD-
Track and OV-Track are MOT trackers that are not well-
suited for tracking unknown generic objects. We include
them in our evaluation to highlight the contrast in per-
formance for generic object tracking. In Table 1, we
present a comparison of GMOT-Mamba (Ours) on the
LaGOT and LaSOT datasets, which are widely adopted
for benchmarking MOT and SOT performance, respec-
tively. The comparison includes metrics such as F1 score,
precision, Success, and the HOTA metric [26]. Compared
to SOT-based methods, it falls behind only MixFormer
[23]. However, it is important to note that SOT methods

Table 3. Ablation Study
Model

Prediction Bi-directional Time-Invariant SSM LaGOT
F1-Score Success

Mamba-ED ✓ ✗ Selective 0.58 57.64
Mamba-ED ✗ ✗ Selective 0.54 57.28

S4-ED ✓ ✓ Structured 0.51 55.02
S4-ED ✗ ✓ Structured 0.48 54.32

cannot track multiple objects simultaneously, unlike our
approach. We report metrics on LaGOT by running SOT
trackers m times, where m corresponds to the number of
track IDs available for each sequence. Our method per-
forms competitively with TaMOS [4] in tracking multiple
objects simultaneously. In Table 2, we show inference
speed obtained by different model prediction-based ap-
proaches. Our method achieves notable FPS gains when
tracking multiple objects (n out of m) compared to SOT-
based methods and demonstrates improved speed over
TaMOS. In Figure 3, we present qualitative results ob-
tained by GMOT-Mamba.
Ablation Study In Table 3, we present an exhaus-
tive study of incorporating various types of SSMs in the
model prediction approach, discussed in Section 4.1. Ini-
tially, we modify the proposed Encoder-Decoder (ED)
modules by incorporating bi-directionality into the ViM
Block [12]. Additionally, we eliminate the dependence on
input for parameters (∆, B, C), making the SSM time-
invariant, following the structure of S4 Models (Struc-
tured SSM). The effects of these changes on ViM blocks,
as illustrated in Figure 2(c) is detailed in the Table 3.
All configurations presented in this table are evaluated
after 40 training epochs for fair assessment. We find that
SSMs perform best in bi-directional and selective state
space settings, which we utilize to construct the ViM
blocks of our proposed network, GMOT-Mamba.

6. CONCLUSION

This work introduces GMOT-Mamba, a model-based
prediction approach leveraging Mamba for generic multiple-
object tracking. We propose a novel encoder-decoder
architecture featuring a standard ViM-block with a
Weighted-Feature Pooling layer, which transforms and
fuses input features into a learnable matrix to predict
filter weights. Our experiments demonstrate that state
space models, like Transformers, effectively learn dis-
criminative features. GMOT-Mamba achieves compet-
itive performance compared to state-of-the-art GMOT
methods and surpasses SOT methods in both met-
rics and inference speed. Our ablation studies reveal
that selective SSM (Mamba) outperforms traditional S4
Models, showing great promise for vision-related tasks,
including tracking.
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