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Abstract. In this work, we address the problem of extracting high di-
mensional, soft semantic feature descriptors for every pixel in an image
using a deep learning framework. Existing methods rely on a metric
learning objective called multi-class N-pair loss, which requires pairwise
comparison of positive examples (same class pixels) to all negative ex-
amples (different class pixels). Computing this loss for all possible pixel
pairs in an image leads to a high computational bottleneck. We show that
this huge computational overhead can be reduced by learning this metric
based on superpixels. This also conserves the global semantic context of
the image, which is lost in pixel-wise computation because of the sam-
pling to reduce comparisons. We design an end-to-end trainable network
with a loss function and give a detailed comparison of two feature ex-
traction methods: pixel-based and superpixel-based. We also investigate
hard semantic labeling of these soft semantic feature descriptors.

Keywords: Feature Extraction, Semantic Representation, Image Seg-
mentation, Superpixels.

1 Introduction

Automatic object detection and characterization is a difficult problem. Chal-
lenges arise due to the fact that the appearance of the same object can differ
heavily in terms of orientation, texture, color, etc. Therefore, it is necessary that
feature description for pixels belonging to the same class should be such that
it can cope-up with all variations. There has been wide research in this field
using traditional approaches. Features such as SIFT [1], SURF [2] are crafted
in such a way that they remain scale and orientation invariant. The problem
of scale variance of features can be explained by scale-space theory [3]. Though
various traditional approaches work well for a small set of images or a partic-
ular shape of an object, their efficiency in capturing characteristics for a large
number of classes with respective variations has not been explored much. The
current state-of-the-art methods rely on deep learning for feature extraction,
which outperforms traditional approaches. Deep learning based segmentation
methods extract a feature map of the image and then assign a probability mea-
sure on it. Hence, we obtain a hard label for every pixel signifying its class. In
soft segmentation, a pixel can belong to more than one segments. Therefore, it
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represents soft transitions between the boundaries of objects. These soft tran-
sitions have a wide range of applications in image matting, deblurring, editing,
and compositing [4] [5].

Deep learning techniques use various metric learning methods to establish
a relation between the input and the output. Deep networks can learn these
complex non-linear metrics by loss functions such as contrastive Loss, triplet
Loss, etc. These losses are often used in obtaining discriminatory features maps
for applications in image retrieval and face recognition [6]. The loss incurred
in these frameworks are computed only considering one negative example, and
hence, these methods lead to slow convergence. Addressing this issue authors
of [7] proposed multi-class N-pair loss extending triplet loss in which a positive
example is compared with all possible negative examples.

The metric learning technique in [7] can be used for extracting distinct se-
mantic features such that objects similar in semantic context tend to have similar
features. As there can be a large number of both pixels and class labels in an
image, N-pair loss computation can be a computational bottleneck. To deal with
this, [4] adopts a sampling approach. They iteratively sample a sizeable number
of pixels from a subset of randomly chosen classes and compute pairwise loss on
these selections. A major drawback of this approach is that the global context of
image diversity is not captured and all negative class examples are not employed
for the loss calculation.

To address this problem, we leverage the property of superpixels in repre-
senting a set of similar pixels. We employ a modified form of N-pair loss on all
superpixels instead of pixels. This also preserves the global context of semantic
diversity in an image. In section 3, we discuss the detailed implementation of
the layer which determines feature vector for superpixels and propose the archi-
tecture of an end-to-end trainable network. The model learns to extract similar
features for superpixels if they represent the same semantic class and dissimilar
otherwise. In section 4, we discuss about the complexity of our methodology dur-
ing the forward and backward pass, assess semantic hard labeling of obtained
feature descriptors and their application in obtaining soft segmentation using
matting method of [4].

2 Related Work

There are many widely used loss functions for deep metric learning, such as
Euclidean loss, softmax loss, contrastive loss, N-pair loss, etc. For extracting fea-
tures, contrastive and triplet losses impose a margin parameter such that features
of different classes are distant from each other at least with the margin imposed.
Both the loss functions suffer from slow convergence as they employ only one
negative example at a time for learning [7]. Moreover, to reduce computational
complexity, they require data sampling for positive and negative samples to ac-
celerate training [8] [4]. We use a modified form of N-pair loss as in [7] for our
feature extraction, which addresses the problem of these losses while maximizing
inter-class separability.
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Image segmentation techniques have significantly improved with deep learn-
ing methods. Most of these methods incorporate softmax loss for classification of
each pixels to their respective context [9][10][11]. Though softmax losses can ef-
ficiently predict the probabilities of a feature to be classified in which class, they
fail to obtain the largest separable discriminatory feature map for positive and
negative examples. Inspired from margin imposition in contrastive and triplet
losses, [12] proposes a combination of margin term with softmax losses. Softmax
loss alone tends to fail in extracting discriminatory features, specific to problems
addressed [13][14] combine both of the losses for learning.

For soft segmentation, per-pixel feature extraction is an important step. [4]
adopts discriminatory feature learning metric by imposing loss in hard negative
data mining style. They further use the semantic discrimination ability of these
features to obtain soft segments using spectral matting technique. Some other
soft segmentation methods use matting with the color information of the pixels
[15][16].

3 Method

Our method has the following steps: Feature extractor CNN, which extracts
the feature map with the weights of kernels learned during training by CNN.
We over-segment the input image to obtain superpixels and define a mapping
function on the extracted feature map to determine feature descriptor for every
superpixel. We employ a modified form of N-pair loss on these superpixels to
update the weights of the network. We discuss specific details of architecture
and feature extraction, mapping function to obtain feature of superpixels, loss
function in 3.1 and 3.2, respectively.

3.1 Model Architecture

We extract features for semantic soft segmentation by a neural network, as
shown in Fig. 1. We use cascaded ResNet bottle-neck block [17] as the baseline of
the network for feature extraction and downsample the map up to approximate
one-third size of initial input. Output feature map at different layers contain dif-
ferent contextual information. Lower level features are object contours and edge
aware while higher level features are context aware. In the end, we concatenate
all these features as discussed in [18]. Thus, the obtained map has information
about semantic context and contour of objects and regions in an image.

As the network grows deeper, convolutional neural networks face the problem
of vanishing gradients, and this can be addressed by making skip connections in
the architecture. A basic ResNet bottleneck block serves this purpose [17]. We
downsize the feature map output of ResNet blocks by the max-pooling operation.
In the end, we concatenate feature maps from various layers of the network by
bi-linearly upsampling them to match with original image shape. We perform
a metric learning operation on these concatenated features using super-pixels
instead of the per-pixel approach used by [4]. This increases the computational
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performance of the network and makes the model aware of global semantic infor-
mation in an image. We generate superpixels by simple linear iterative clustering
Algorithm [19], which uses LAB features and spatial information per pixel to over
segment the image.

Fig. 1: Architecture of Feature extraction CNN.

Feature descriptor for superpixels. For every superpixel generated by SLIC
algorithm, first we need to associate each of them with a ground truth label for
supervised learning using CNN. As every superpixel is a collection of pixels which
are similar to each other in the local context, we assign ground truth label of
a superpixel with the labels of pixels constituting it. Due to inaccuracy along
edges and other factors, it may occur that a superpixel may contain differently
labeled pixels. In such a case, the label having a majority among all pixels is
assigned as ground truth label, refer Equation (1).

For an image I containing Np pixels with its ground truth labeled in Nc

semantic classes. Let P= {pi}
Np

i=1 be the set of all pixels, L = {li}
Np

i=1 be their

corresponding labels where li ∈ {1, 2, . . . , Nc}, and S= {Si}Ns
i=1 be the set of all

Ns superpixels generated by SLIC. We define the sets Pi ⊂ P and Li ⊂ L to be
the set of pixels and the set of labels that a superpixel Si contains, respectively.
Assume Si contains total of k pixels such that cardinality |Pi| = k = |Li| and
Pi = {pj}kj=1 , Li = {lj}kj=1 with pixel pj having label lj . The ground truth
label lSi for superpixel Si is determined by Equation (1).

lSi = max({C(li) | C(li) =

k∑
j=1

δ(lj , li)}ki=1) (1)

lS = [lS1 , lS2 , . . . , lSNs
]T (2)

where, C(li) represents the number of occurrences of li labelled pixels in super-
pixel Si, lS is a vector representing labels of all Ns superpixels, and δ(i, j) is a
Kronecker delta function which takes the value 1 if i = j and 0 otherwise.

Let us represent final concatenated features from feature extractor by F with
F ∈ RD×H×W and input image I ∈ R3×H×W , where D,H,W are the dimensions
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Fig. 2: Flowchart

of the extracted feature map, height and width of the image, respectively. Note
that for every Np pixels, their exist Np number of D length feature vectors in
the feature map F. For each pixel p ∈ P, we represent its feature vector as Fp

such that Fp ∈ F. We find a single dimensional feature vector FSi for superpixel
Si ∈ S as the average of features of all pixels in Pi by Equation (3). Note that
Pi is the set of all pixels that are contained in superpixel Si with |Pi| = k and
Pi ⊂ P.

FSi =
1

|Pi|
∑
j

Fpj
, ∀pj ∈ Pi ⊂ P , i ∈ {1, 2, . . . , Ns} (3)

FS = [FS1 ,FS2 , . . . ,FSNs
]T (4)

Using Equation (3), we determine the averaged feature for all superpixels and ob-
tain a superpixel feature map FS with FS ∈ RNs×D and corresponding ground
truth label lS with lS ∈ RNs from Equations (4) and (2), respectively.
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3.2 Loss function

For learning, we use modified form of the N-pair loss [7] where we use L2 dis-
tance between superpixel feature vectors instead of inner product in similar way
as in [4]. Consider two feature vectors of superpixels Sp and Sq represented by
FSp , FSq ∈ FS with labels lSp , lSq ∈ lS respectively, where p, q ∈ {1, 2, . . . , Ns}.
We define loss function such that FSp and FSq are similar to each other if
lSp = lSq and dissimilar otherwise by Equation (5).

Lpq = 1
|S|

∑
p,q∈|S|

I[lSp = lSq ] log
((

1 + exp
( ∥∥FSp −FSq∥∥ ))/2)

+
∑

p,q∈|S|
I[lSp 6= lSq ] log

(
1 + exp

(
−
∥∥FSp −FSq∥∥ )/2) (5)

where |S|= Ns= total number of superpixels generated using SLIC. I[.] is an
indicator function which is 1 if statement holds true and is 0 otherwise. ‖.‖ rep-
resents L2 distance between the feature vectors. Note that if lSp = lSq and both

superpixels have dissimilar features then log
((

1+exp
( ∥∥FSp −FSq∥∥ ))/2) term

in Equation (5) evaluates to a larger value and contributes to total loss which
needs to be minimized by back-propagation through the network. Moreover, if
features of both the superpixels are similar then the value of this term approaches
zero and no loss is induced. Fig. 2 shows the flowchart of adopted methodology.
Note that superpixel supervision is only needed for loss calculation and is no
more needed once the training is over. Since from ground truth information, we
only use the fact that whether two features under consideration belong to the
same category or not, learning is class agnostic. In Section 4, we assess semantic
hard labelling of the learned feature descriptors.

Feature extraction and selection We fix the size of the input to CNN by
resizing the images to 224 × 224. Then, we obtain a 128-dimensional feature
map F. For loss computation, we over-segment the input image into Ns = 500
superpixels and compute N-pair loss as defined in Equation (5). Using Equa-
tions (3) and (4), we obtain 128 dimensional feature vector FS ∈ R128×500 for
every superpixel. This feature map for every super pixel has enough capacity
to capture diverse contextual data of objects. We perform guided filtering [20]
on the obtained feature map with the guidance of input image. This lets fea-
tures to adhere more towards boundary and contours present in an image. To
reduce dimensionality and select the dominant feature from F, we use principal
component analysis (PCA)[21] and generate a 3D feature map corresponding to
the three largest eigenvalues. We show a comparison of both selected dominant
features and few random 3D projections of filtered 128-D map F in Fig. 3 and
4, respectively. To show feature descriptors of superpixels, we define a mapping
on FS as M : FS → F̃, where F̃ ∈ R128×224×224 as in Equations (6) and (7).

M(FSi) = FSi (6)
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F̃p =M(FSi) | ∀p ∈ Pi, i ∈ {1, 2, . . . , Ns} (7)

where F̃p ∈ F̃ is the mapped 128 dimensional feature vector for pixel location p.
Note that Pi is the set of all pixels that the superpixel Si contains. We show a
comparison of mapped superpixel features F̃ vs feature map F in Fig. 5. Observe
that feature map F is smoother and continuous than F̃ in Fig. 5. Hence, we use
F for feature selection using PCA and further processing. This also reduces the
complexity of CNN once training is over as superpixel supervision is no more
needed. In Fig. 2, we show a flowchart of approach during training and testing
of network.

4 Experimental Analysis

We trained our network on ADE20k dataset [22], which contains 150 labeled
semantic classes. We used basic bottleneck block from ResNet as a building
block of our feature extractor CNN. Weights of the network were initialized
by Xavier initialization[24]. We start with a learning rate of 1 × 10−3 and use
stochastic gradient descent optimizer with the momentum of 0.9, weight decay
of 5 × 10−4 and poly learning rate of 0.9 as suggested in [25]. We generated
Ns = 500 number of superpixels for input image by SLIC algorithm [19] to
estimate loss during training session. Note that few pixels may remain disjoint
after over segmentation using SLIC. To ensure connectivity, post-processing of
superpixel is done so that every disjoint pixel is assigned to a nearby superpixel.
Due to this operation, we may obtain a lesser amount of superpixels than Ns. We
populate FS and lS with redundant data to match the dimensions of incoming
batches and compute loss using equation 5. We train for 60K iterations with a
batch size of four over ADE20k training split which has 20210 images. It takes
about 12 hours on NVIDIA Titan Xp 12GB GPU. We show the semantic soft
segmentation by matting method proposed in [4] on our features and comparison
in Fig. 6.
Loss computational complexity. It is easy to notice that over segmenting an
image into superpixels reduces the number of data points from total pixels in
image |P| = Np to |S| = Ns. As mentioned by authors of SLIC algorithm [19],
the complexity to compute superpixels is O(Np) and for computing L2 distance
between feature descriptors for every possible pairs of superpixels, complexity is
of order O(N2

s ). Thus, our method achieves total complexity of O(Np)+O(N2
s ).

In our experiment we use Ns = 500 and image of size 224×224 having total pixel
count Np = 50176. We compare our method of loss estimation with [4], which
employ sampling based approach to reduce complexity. They randomly select
Ninst number of instances out of Nc labelled classes from image, sample Nsamp

amount of pixels from every selected instance and compute L2 loss between each
possible pixel pairs. They repeat this process Niter times. Let us define the total
number of feature descriptors sampled as Ntotal = Niter × Ninst × Nsamp. The
computational complexity for this method becomes O(N2

total). Numerical values
reported in [4] are as Niter = 10, Ninst = 3 and Nsamp = 1000 having complexity
of O(300002) compared to O(5002) +O(50176) by our method. Note that in our
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(a) (b) (c)

Fig. 3: For an input image (a), we show effect on features obtained after PCA
with and without guided filtering in (b),(c) respectively. Notice the adherence
of features towards edges in (c) due to guided filtering operation. Image taken
from ADE20k dataset [22]

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4: For an input image in (a) we extract 128-dimensional feature map F and
show randomly sampled 3d maps from it in (c,d,e,f,g,h). (b) shows 3-dimensional
feature selection on F using PCA. Notice the semantic context embedded in
different channels of map. Image taken from ADE20k dataset [22]

Input Image

Fig. 5: For an input image, Row 1 shows randomly sampled 3D maps from F
and Row 2 shows superpixel feature descriptors by mapping M defined in 6.
Observe the smoothness of F compared to F̃. Zoom in caption is enhanced for
better visualization. Image taken from coco stuff dataset [23]
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(a) (b) (c) (d) (e)

Fig. 6: (a) Three different input images from coco stuff dataset [23] (b) Features
extracted in [4] (c) Features extracted using our method (d) Semantic soft seg-
mentation results reported in [4] (e) Semantic soft segmentation results produced
by our features using matting method of [4].

method, superpixel computation does not cause any back-propagation overhead.
During training time, gradients accumulation in the graph is only due to N2

s

data points while the method in [4] needs an accumulation of gradients for all
Ntotal points. In Table 1, we summarize the comparison of both the methods.

Method Iterations Instances Points Complexity Parameters
Our method NA NA Ns O(N2

s ) +O(Np) 3.7 M
Aksoy et al[4] Niter Ninst Ntotal O(N2

total) 68.6 M

Table 1: Computational complexity of two methods. Note that in our method
O(Np) don’t add any overhead to gradient computations during backpropagation

Semantic hard segmentation. To assess the hard labeling of obtained feature
descriptors, we add layers to reduce the dimension of feature map to a total
number of labeled classes Nc in ground truth for evaluating cross entropy loss.
We employ architecture shown in Fig. 7 on CityScape dataset [26] which has
a total of Nc = 19 labelled classes. We use feature extractor CNN in the test
mode to obtain soft semantic feature map of 128 dimensions. We train the model
over training split of the dataset and form a confusion matrix for every pixel
with its predicted label and ground truth label to compute mean Intersection
over Union(IoU), pixel accuracy, class accuracy and frequency weighted IoU. We
report standard metrics of semantic segmentation and some results on validation
split in table 2 and Fig. 8, respectively. Note that, we use lower level features
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Fig. 7: Semantic hard labelling of soft feature descriptors by employing cross
entropy loss. Note that we use Feature extractor CNN in test mode and only
learn weights for added convolution and batch-normalization layers. Color legend
for layers is same as in Fig. 1.

from first ResNet block inspired from [18] to acquire contours and edges of slim
objects like poles, traffic lights which seem to be lost due to in-efficiency of SLIC.
From Table 2, we observe that soft features extracted posses enough diversity to
be used for semantic segmentation purposes by integrating it with various state-
of-the-art methods. We compare the results with benchmarks on CityScapes
dataset in Table 3.

Pixel Accuracy 88.12%
Class Accuracy 58.65%

mIoU 40.37%
fwIoU 81.66%

Table 2

Method mIoU

SegNet basic [11] 57.0%

FCN-8s [10] 65.3%

DeepLab [25] 63.1%

DeepLab-CRF [25] 70.4%

Proposed Approach 40.37 %

Table 3

Table 2 shows the metric evaluation on CityScapes[26] dataset, where mIoU,
fwIoU refers to mean and frequency weighted intersection Over union. Table 3
compares the results with state of the art methods on this dataset.

5 Conclusion

We have proposed a deep metric learning method to extract a feature de-
scriptor per pixel in an image. We have designed a layer which can be back-
propagated to determine features for SLIC superpixels and have proposed an
end-to-end trainable model architecture. We have employed the multi-class N-
pair loss on superpixels instead of pixels, thus reducing the complexity of loss
computation and backpropagation overhead. We have shown that the feature
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map learned has diverse semantic context of an input image and can be used for
various applications like semantic soft and hard segmentation.

Input image Ground Truth Soft Features Prediction Map

Fig. 8: Semantic segmentation by employing cross entropy loss on obtained 128D
feature map.Soft features shown are selected 3D features using PCA.
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