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ABSTRACT

Accurate 3D modeling of humans and high-fidelity gar-
ments is crucial in computer vision and graphics, im-
pacting gaming, virtual, and augmented reality applica-
tions. While recent data-driven approaches have pro-
gressed in estimating segregated geometries for clothed
humans, they often struggle with the seamless integra-
tion required for physics-based simulations. We intro-
duce Deformable Animation Ready Templates (DARTs)
to address these challenges, which enhance template-
based garment reconstruction. Our framework employs a
robust feature-line regressor network to establish precise
deformation constraints guided by input image charac-
teristics. Additionally, we present a novel differentiable
Constrained Rigid Deformation Layer (CRDL) that fa-
cilitates effective template deformation while preserv-
ing the essential geometry of the garment. Our experi-
ments demonstrate that DARTs can generate templates
for physics-based simulation, allowing for seamless gar-
ment animations influenced by dynamic environmental
factors. With minor adjustments, our templates can ac-
commodate various clothing categories, promoting diver-
sity in animated garment modeling.

Index Terms— 3D Garment Reconstruction,
Template-based Clothing, Deep Learning.

1. INTRODUCTION

The 3D modeling of humans and high-fidelity wearable
garments is pivotal in computer vision and graphics.
These geometric representations enable photorealis-
tic and essential applications in virtual live-streaming,
gaming, filming, visual effects, and virtual/augmented
reality. Initially, methods employed reconstruction tech-
niques using a single surface (mesh or voxel) to rep-
resent both clothing and the body. Consequently, such
approaches could not separate the clothing from the sub-
ject in the image, which restricted their applicability in
garment-specific applications and significantly hindered
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Fig. 1: The effects of manipulating spring constraints defined
on the proposed DART templates. In (a), the spring ends
are merged (welded), (b) high spring strength, followed by
progressively loosening in (c) and (d). (e) shows repulsive
spring forces, and (f) showcases the effect of partially applying
spring forces along the seams, facilitating garment openings.

realistic animation capabilities. The rise of deep learn-
ing techniques for recovering unclothed human shapes
and poses from multiple or even single images [1, 2] has
yielded remarkable results. Recent advancements focus
on enhancing realism and providing greater control over
garment reconstruction by learning the geometries of
humans and wearables separately. To capture complex
geometry beyond just human body shape, several non-
parametric, voxel-based, and implicit representations
have been introduced [2–5].

To faithfully reconstruct an animation-ready gar-
ment template that captures the clothing characteristics
from a single image, we propose Deformable Animation
Ready Templates (DARTs) for clothing humans. In this
work, we propose a robust feature-line regressor network,
which is essential for setting accurate constraints for de-
formation. We utilize templates derived from the SMPL
model of humans [6], and enhance them with function-



alities essential to garment draping. We refer to our
modified templates as DARTs. Our central insight is
that the deformation of templates must also be guided
by the characteristics of the input image, known human
shape priors, and the regressed feature lines. To achieve
this, we propose a novel differentiable Constrained Rigid
Deformation Layer (CRDL) to deform the templates ef-
fectively. Through experimental validation, we show
that our deformed templates are ready for physics-based
simulation, influenced by the factors set during deforma-
tion by the CRDL layer, thereby fully automating the
process. With minimal adjustments, our templates can
also be adapted to generate a variety of clothing.
Contributions. In summary, our contributions are
three-fold. 1. We propose a Spatial-Transformer-based,
image-guided Graph Neural Network (GNN) for feature
line regression specifically designed to estimate feature
lines accurately. 2. We introduce a novel differentiable
Constrained Rigid Deformation Layer (CRDL) for de-
forming garment templates, constraining deformation on
diverse factors. This approach for deformation achieves
superior results compared to traditional techniques and
enables physics-based simulation-ready templates that
can adapt to various clothing categories. 3. We en-
hance templates derived from SMPL human body priors
by equipping them with simulation-ready capabilities
and refer to them as Deformable Animation Ready
Templates. We demonstrate the clothing simulations
generated on AMASS sequences using DARTs.

2. RELATED WORK

Garment reconstruction approaches can be broadly clas-
sified into template-free and template-based methods.
This section reviews prior studies relevant to our work.
Garment Reconstruction With Templates. Start-
ing with human shape as prior [7] model garments as
offsets from human body shape and learn a displace-
ment vector for each body vertex to construct skin-tight
garments. BCNet [8] initially generates a basic tem-
plate mesh using PCA and then enhances surface de-
tails through an image-guided graph attention network.
MultiGarment-Net (MGN) [9] predicts category-specific
garments and body shapes by training a deep learning
model on large-scale digital wardrobe. SMPLicit [10] in-
troduces a topology-aware generative model to represent
garment geometry. Building on templates derived from
the SMPL human model [6], methods like [11,12] propose
an explicit template fitting on implicit representations to
regress clothed geometry. These methods primarily fo-
cus on estimating static meshes by capturing fine surface
details, which are often less relevant for garment anima-
tion, as the estimated deformations are ultimately over-
ridden by factors like gravity, wind, collision, and ma-

terial properties during physics-based simulation. These
physical factors dynamically influence the garment’s be-
havior in real-time, adjusting its drape, folds, and wrin-
kles in response to the surrounding environment and mo-
tion, making initial surface detail less impactful.
Animation Ready Clothing Templates. Classical
mass-spring and position-based modeling methods [13]
enhance simulation efficiency, though with trade-offs in
speed. These advancements enable methods such as [14]
to model garments as panel-based structures with prede-
fined sewing patterns, creating diverse datasets through
simulation. NeuralTailor [15] infer sewing patterns and
panels from 3D point clouds. PanelFormer [16] utilizes
a transformer-based network to estimate panels and
stitches given a single image. Similarly, [17] uses SMPL
templates for draping various garment styles; however,
this method is limited to close-fitting garments like
shirts and pants and does not effectively model looser or
more complex garments, such as long dresses and skirts.
More recently, [18] explored reconstructing real-world
garments employing Gaussian splitting [19].

3. METHODOLOGY

Given a single image I, we aim to generate simulation-
ready garment geometry that integrates smoothly with
physics-based simulation (PBS) frameworks. Our ap-
proach begins by building garment templates on the
SMPL human body model, represented as the para-
metric function M(.), which depends on both pose
(θ ∈ R3×24) and shape (β ∈ R10) parameters [6]. Our
garment templates are built on top of M(.), aligning
with previous approaches [11, 12, 20]. Initially, we ad-
just the per-vertex segmentations in the standard SMPL
model [6] to suit our needs better, mainly refining areas
such as the shoulders and hemline, as shown in Figure
2(a). Our garment templates cover 12 common clothing
categories from the DeepFashion-3D Dataset [11], in-
cluding long/short/no-sleeve tops, long/short/no-sleeve
dresses, as well as long/short pants and skirts. We uti-
lize pose and shape parameters provided in the dataset
directly, and, in the case of inference on real images, an
off-the-shelf parameter regressor like PyMAF [21] could
be employed. To form templates for specific garment
categories, we combine only the relevant segments, ex-
cluding geometry related to the head, palms, and feet in
all template categories, as these areas are irrelevant to
garment geometry. All segment boundaries are used to
form a collection of initial feature lines, denoted as Fsmpl

(Figure 2(b)). In contrast, the feature lines for a specific
garment template Tg are represented as Fg ⊂ Fsmpl. For
example, for the no-sleeve dress category, the extracted
garment template Tg is shown in Figure 2(c), and the
initial garment feature lines Fg are highlighted in green



Fig. 2: Given an input image, denoted as I (d), we begin by selecting a template Tg (c) and the corresponding feature lines
Fg (e) derived from the posed SMPL human model M (a). The complete set of possible feature lines across all garments,
denoted as Fsmpl, is shown in (b). We then apply image-guided spatial translations to Fg, utilizing features Xf extracted from
ResNet-50 to obtain the translated feature lines F trans

g . Finally, we refine this output through multiple CRB blocks to produce
the regressed feature lines, P gtrans. The intermediate outputs after the Image-Guided STM module and the GCN-guided
STM modules are shown in (f), (g), (h), and (i). Legend: Graph Convolution Layer, and ReLU activation.

in Figure 2(e). Every i-th feature line fi forms an edge
loop, with each vertex having precisely two neighbors.

Feature Line Regression Network Given our focus
on robustly estimating accurate feature lines, we extend
the baseline approach of [11,22] and introduce a Spatial-
Transformer-based, image-guided feature line regression
network. The feature line regression network, as shown
in Figure 2, takes as input the image I, feature lines
Fsmpl and camera C as input and predicts the final 3D-
feature lines reflecting boundary details from the input
image. In terms of architecture, our Regression Net-
work differs from [11] with the key difference that it em-
ploys an Image-Guided and GCN-Guided Spatial Trans-
former Module. To select the appropriate garment tem-
plate Tg and feature lines fg from fsmpl, we finetune
a ResNet-50 architecture for classification on the Deep-
Fashion3d Dataset. On our synthetic dataset, we use
90% for training and achieve a classification accuracy of
99.4% on the validation set. Utilizing camera parame-
ters C, calculated w.r.t. T-posed SMPL, we project the
translated points onto the spatial resolution of i-th fea-
ture map Xi ∈ Xf and pool the features for all i, similar
to [22]. This process is represented by the Image-Space
Projection and Feature Pooling blocks in Figure 2. Af-
terward, we concatenate pooled features with vertex lo-
cations, resulting in Z, where each vertex in fi has its
corresponding pooled feature of q-dimensionality, such
that zi ∈ Rni×(q+3). These concatenated features are
passed through multiple Crease Regressor Blocks to pro-
duce the final feature lines. Based on the garment cat-
egory in the input image, STM Modules predict a spa-
tial translation vector for each feature line fi ∈ Rni×3

within Fg. Image-Guided Spatial Transformer takes Xf

as input and outputs a global translation vector for each
feature line fi in Template Tg. In contrast, GCN-Guided
STM takes high-dimensional per-vertex features Pg and
outputs per-vertex translations to facilitate fine move-
ments of vertices for crease-line fitting. The feature lines
after global and per-vertex translations are shown in Fig-
ure 2(f) and Figure 2(g-i), respectively. The addition of
STM Modules improves the regression capability of the
network, as we discuss in Section 4. Similar to [11], we
utilize Chamfer loss Lc with edge regularization Led to
supervise the network during training. However, this loss
alone does not ensure that the feature lines form a single
continuous circular loop, which is essential for the ro-
bust deformation of the template. We train the network
with additional circularity loss Lcirc to address this. A
detailed explanation of spatial transformers and the loss
functions is provided in the supplementary material.

Lce =
Ny+1∑
i=0

Lc(Fg, Xi
g) + λ1

Ny+1∑
i=0

Led(Xi
g) + λ2Li

circ (1)

Constrained Rigid Deformation Layer. We em-
ploy detail-preserving deformations by applying the as-
rigid-as-possible (ARAP) technique, as proposed by [25],
which minimizes deviations from rigidity by penalizing
changes in local vertex neighborhoods. In contrast to
[25], which minimizes the ARAP energy through an it-
erative least-squares approach, we introduce a differen-
tiable computation of the ARAP energy using the CRDL
Layer. Specifically, we design the CRDL layer for the
template Tg, with its vertices vT ∈ RV ×3, treated as
learnable parameters. To determine the optimal param-
eters vT , we minimize (a) the ARAP energy and (b) the



Fig. 3: Fitting to a given shape prior is challenging for gar-
ments in dress categories, such as skirts, that cover both legs.
We estimate the hull mesh (c) for the lower body (a) and
guide the garment vertices to move along the outward nor-
mals of the hull mesh (c) rather than those of (b). The normal
directions are indicated by pink arrows (Zooming in is rec-
ommended).

Fig. 4: A quantitative crease-wise comparison of chamfer
distance across different garment groups with P2M + GCN
[11]. P2M + Im-Guided STM highlights the impact of
incorporating the proposed crease-wise global translations.
Significant improvements are observed, especially in feature
lines N and H that undergo large transformations. Crease
Labels: W (Waist), LL (Left Leg), RL (Right Leg), LA (Left
Arm), RA (Right Arm), N (Neckline), H (Hemline).

fitting constraint losses in an iterative process using the
ADAM optimizer. This optimization is performed based
on the final positions of the vertices defining the crease
feature lines P trans

g predicted by the Feature Line Re-
gressor.
(a) ARAP Energy. The ARAP energy quantifies the
deviation from rigidity by penalizing the alterations in
local vertex neighborhoods between the original and de-
formed meshes. Mathematically, the ARAP energy E for
a deformation is defined as described in Equation 2.

E =
∑

i

∑
j∈N (i)

wij ||(p′
i − p′

j) − Ri(pi − pj)||2 (2)

Here, i represents the index of a vertex in vi ∈ vT , with
its neighborhood defined as N (i). The vertex locations pi

and pj refer to positions in the template mesh Tg, while
p′

i and p′
j denote positions in the deformed mesh. Unlike

the hard constraints set for vi ∈ Fg to move to P trans
g

as in [25], our p′
i and p′

j are learnable parameters from
the CRDL layer, which will be optimized by minimizing
the energy defined in Equation 2. wij is the per-edge
cotangent weight, and Ri is a local rotation matrix for
vertex vi, capturing the optimal rigid rotation for that
vertex’s neighborhood. For a detailed explanation of the

Method P2M-GCN [11] Im-Guided STM Ours
Upper Lower Skirts Upper Lower Skirts Upper Lower Skirts

CD 0.217 0.122 0.158 0.18 0.106 0.087 0.155 0.092 0.078

Table 1: Chamfer distance between the predicted and
ground truth feature lines.

method, we refer readers to [25], with additional context
provided in the supplementary material.
(b) Fitting Constraints. Deforming Tg solely through
the handle constraints on feature lines, as described by
[25], often leads to mesh penetration into the human
body M(β, θ), which is undesirable for clothing simu-
lations. For each vertex vi ∈ Tg, we first identify the
nearest vertex vnear

i ∈ M and calculate the signed dis-
tance si, which considers the direction relative to the
normal nnear

i at the nearest vertex. Specifically, si = di

if (vi − vnear
i ) · nnear

i > 0, and si = −di otherwise. To
prevent penetration, we encourage each vertex vi with
si < 0 (i.e., inside the target surface) to move in the di-
rection of the outward normal. We impose the following
loss, defined in Equation 3, where Vin is the set of all
vertices with si < 0.

Lfit = 1
|Vin|

∑
i∈Vin

(vi − vnear
i ) · nnear

i (3)

As per Equation 3, fitting to the SMPL body prior (M)
presents a challenge for garments in dress categories, like
skirts, that span both legs. To address this, we estimate
the convex hull of the lower body, re-mesh it isotropically,
and apply the fitting loss on this modified body model,
where the lower part is replaced by the estimated hull
mesh instead of using M directly. This is illustrated in
Figure 3. Since the deformation resulting from minimiz-
ing Equation 2 only aligns the outermost feature lines,
we also apply a silhouette loss Lsil based on the seg-
mented garment in the input image I and the rendering
of the template Tg from the viewpoint of the camera C.
Animation Ready Templates. We create commonly
used seams as outlined by [14,15], enabling templates to
be reorganized into multiple panels, as shown in Figure
7(a,b). We then add spring-based constraints between
the separated panels. The created seams could also be
extended to stitch accessories, such as ties and collars, as
illustrated in Figure 7(c). Figure 1 highlights how ma-
nipulating spring constraints enables diverse simulation
capabilities. Additionally, in Figure 5, we present cloth-
ing simulations performed on a template obtained after
CRDL deformation.

4. RESULTS

Our network is trained using a synthetic dataset derived
from the registered scans and annotations provided by
the DeepFashion3D Dataset [11]. This dataset consists



Fig. 5: Simulation results obtained within Maya software on an AMASS [23] sequence for a deformed template.

Fig. 6: Qualitative comparison of template deformations:
handle-based mesh deformation [11,24] (d), ARAP deforma-
tion [25] (e), and CRDL Layer-based deformation (f). Feature
line regression results by our method (c) vs. ground truth
(b) for the input image (a). Final deformed mesh via CRDL
Layer (g) and corresponding registered garment scans (h) are
shown. Zoom-in recommended.

of 1, 212 registered garment scans across nine clothing
categories. We set aside 10 garment scans for each cat-
egory to conduct quantitative and qualitative analysis.
In Table 1, we report the chamfer distance between pre-
dicted and ground truth feature lines, organized by gar-
ment category. Applying spatial translations to crease-
wise features shows significant performance improvement
over P2M-GCN [11], particularly on hemlines and neck-
lines, as these creases tend to exhibit greater spatial
transformations. In contrast to our approach, [12] ef-
fectively estimates feature lines from implicit representa-
tions. However, we cannot directly compare as the model
is not publicly available. Additionally, their method is
computationally intensive due to the learning of implicit
representations. Figure 4 displays crease-wise Cham-
fer distances, emphasizing the substantial improvements
achieved by our proposed approach, particularly in the
bar plots labeled hemlines (H) and necklines (N). In Ta-
ble 1 and Figure 4, Im-Guided STM represents the fea-
ture line network that includes only the Image-Guided
STM, omitting the GCN-Guided STMs from the regres-
sion network, as depicted in Figure 2. Notably, further
improvements are observed when fine translations are
guided by GCN-Guided STMs in the Crease Regression
blocks, demonstrated in the results labeled as Ours in

Fig. 7: Predefined seams (a) and the separation of compo-
nents along these seams to generate DARTs (b). The result-
ing detached vertices are connected using spring constraints.
(c) demonstrates the addition of external accessories to the
predefined seams of the template, along with spring con-
straints in pink (Zooming in is recommended).

Table 1 and Figure 4. In Figure 6, we present the de-
formation of the template mesh Tg using the proposed
CRDL-Layer, compared with [11,24,25] in the context of
garments. The deformed mesh, with DARTs stitch con-
straints, can be directly imported into standard graphics
software for draping simulations, as presented in Figure
5 and Figure 1.
Supplementary Material. The supplementary mate-
rial, available at Link, includes a detailed explanation of
all network modules including spatial transformers, loss
functions, synthetic data curation, depth ablation anal-
ysis, optimization parameters for the CRDL Layer, im-
plementation details, and additional qualitative results.

5. CONCLUSION

We introduce Deformable Animation Ready Templates
(DARTs) as an effective and practical solution for re-
alistic garment reconstruction and animation within
physics-based simulation frameworks. Our method in-
corporates a robust feature-line regression network and
a novel Constrained Rigid Deformation Layer (CRDL).
This design enables precise, image-guided deformations
that incorporate human shape priors and capture intri-
cate details of the garments. The proposed approach
generates simulation-ready templates, significantly re-
ducing the need for manual post-processing.

https://sigport.org/sites/default/files/docs/Darts_Supplementary.pdf
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