
1

Supplementary Material for DMD-Net: Deep Mesh
Denoising Network

Aalok Gangopadhyay, Shashikant Verma, and Shanmuganathan Raman

Fig. 1: Results of DMD-Net on several examples from the ShapeNet dataset.

2

I. DMD-NET ARCHITECTURE

In this section, we provide a detailed explanation about the
architecture of DMD-Net .

A. Feature Guided Transformer (FGT)

DMD-Net is based on the Feature Guided Transformer
paradigm and consists of three main components: the feature
extractor, the transformer, and the denoiser. The main idea
behind FGT is as follows. Consider the scenario where an
oracle gives us access to the local features of the original
ground-truth mesh. With such an access, we could use these
local features to guide the denoising process. But, in reality,
we do not have such an access to the original mesh features, so
we instead try to construct an artificial oracle, which we call
the feature extractor network. We train the feature extractor
to estimate normal vector, mean curvature, and Gaussian
curvature for each vertex of the original mesh from the given
noisy mesh.

These estimated local features serve as guidance for the
transformer to compute a transformation matrix Wtf . The
noisy mesh is combined with the estimated local features
through concatenation. The transformation Wtf is applied on
this combination to obtain an intermediate representation. The
noisy mesh and its transformed intermediate representation
are both passed to the denoiser which generates the final
denoised mesh. The detailed inner workings are described in
the subsequent subsections.

B. Feature Extractor

The feature extractor internally contains a pair of two-stream
networks which have two parallel streams, the upper one called
the dual stream and the lower one called the primal stream.

C. Transformer

The objective of the transformer is to convert the noisy
input mesh into an intermediate representation, which is easier
to perform denoising on. For this, we first use the feature
extractor to estimate the local features for each vertex, such
as the normal vectors, the mean curvature and the Gaussian
curvature which are of size n×3, n×1 and n×1, respectively.
Thus, the combined size of the local features is n× 5.

These estimated local features are then used by the trans-
former to compute the transformation Wtf . In order to com-
pute this transformation, the local features are passed through a
composition of several different layers, such as fully connected
layer with ReLU activation, a series of densely connected
aggregators (AGG), a graph aggregation layer, and a feature
average pooling layer. Note that the second fully connected
layer is not accompanied by a ReLU activation. This is because
the distribution of scalar entries in matrix Wtf should not be
skewed towards positive values.

The input to the feature average pooling layer is a matrix
of size n×4096. The output obtained after pooling is a 4096-
dimensional vector which is reshaped to form the transforma-
tion matrix Wtf of size 8× 512. On the other hand, the noisy
input mesh is concatenated with the local features to obtain

a combined input of size n × 8. The transformation Wtf is
then applied on this combined input to obtain an n × 512
matrix, which is further passed through a graph aggregation
layer along with ReLU activation. This is then processed by
the denoiser to obtain the output denoised mesh.

D. Denoiser

The denoiser has a structure identical to that of the feature
extractor. The only difference is the number of two-stream
networks used and the number of hidden units in the last fully
connected layer.

E. Two-Stream Network

The two-stream network is an asymmetric module consist-
ing of two parallel streams, the lower one for performing ag-
gregation in the primal graph and the upper one for performing
aggregation in the dual graph. It consists of the primal-to-dual
layer, a cascade of aggregator layers and a primal dual fusion
layer.

F. Aggregator (AGG)

The Aggregator (AGG) performs graph aggregation by
pooling in the features of the neighbouring nodes. The input
to AGG is X (feature matrix) and A (adjacency matrix).
The input graph to AGG can be in both forms, primal as
well as dual. The output of AGG is given by g(X ,A) =
σ(D̂− 1

2 ÂD̂− 1
2XW). Here, σ is the ReLU activation function,

W is the learnable weight matrix, Â = A + I (I being the
identity matrix), and D̂ is the diagonal node degree matrix
of Â. In the two-stream network, the three AGG blocks are
connected via residual skip-connections to avoid node feature
collision (refer section II).

G. Primal Dual Fusion (PDF)

In Primal Dual Fusion, the input from both the streams
are passed into the dual average pooling (DAP) layer, which
intermixes the features from both the streams at the facet level.
The PDF serves as a point of communication, allowing flow
of information from one stream to the other.

H. Primal to Dual (P2D)

The primal-to-dual layer appears in the dual stream of the
two-stream network, where its objective is to convert the
primal graph features XV into the dual graph features XF .
The feature of each face is represented as the centroid of
the features of the vertices constituting that face. Thus, we
have XF = D−1

FVAFVXV , where, AFV = AT
VF and DFV is

the degree matrix denoting the number of vertices belonging
to each face. Since our mesh is triangulated, each face is a
triangle and each diagonal entry in DFV is 3. Therefore, we
have the simplified expression XF = 1

3AFVXV .

3

I. Dual to Primal (D2P)

The dual-to-primal layer is mainly used to convert the
dual features XF into a primal form XV . We obtain XV
by pre-multiplying XF with the degree normalized vertex-
face adjacency matrix ÂVF . Here, ÂVF = D−1

VFAVF , in
which AVF is the vertex-face adjacency matrix and DVF is
the degree matrix denoting the number of faces in which a
particular vertex lies.

J. Dual Average Pooling (DAP)

Let XV and XF be the input to the Dual Average Pooling
layer arriving via the primal stream and the dual stream,
respectively. The sizes of XV and XF are n × k and f × k,
respectively. Let F denote the collection of faces of the primal
graph. For each face in F , we perform the following: gather
the features of the three vertices belonging to that face from
XV and gather the feature of that face from XF . Let p1, p2,
and p3 denote the features of the three vertices and d denote
the feature of the face. Note that, in general, d need not be the
centroid of p1, p2, and p3. We measure the distance of d from
the three vertices in each of the k dimensions by evaluating
the following three quantities: la = |p1−d|, lb = |p2−d|, and
lc = |p3 − d|, where | · | denotes the element-wise absolute
value. la, lb, and lc are all k-dimensional vectors. We thus
obtain li = (lai , l

b
i , l

c
i), the fused feature descriptor for ith face.

Collecting the fused descriptor for all the faces gives us L =
(l1, l2, · · · , li, · · · , lf), a tensor with three axes having size
f ×3×k. In order to keep our network permutation-invariant,
we devise the following strategy to pool the fused features. We
pool by using average pooling across the second axis, which
gives an output u of size f × k. Let La = (la1 , l

a
2 , · · · , laf),

Lb = (lb1, l
b
2, · · · , lbf), and Lc = (lc1, l

c
2, · · · , lcf), each of size

f×k. Then, u = 1
3

∑
i∈{a,b,c} L

i is the output of DAP. Figure
3(c) in main paper illustrates the pooling mechanism of DAP.
In the figure, the outer tetrahedron with red nodes is the primal
mesh, whereas the inner tetrahedron with blue nodes is the
dual mesh. These meshes are outputs of the aggregation block,
which separately processes the primal and the dual meshes.
Hence, the blue nodes are not centroids of the red nodes, in
general.

K. Feature Average Pooling (FAP)

The Feature Average Pooling layer is used inside the trans-
former to pool the features across all the vertices and output
the transformation. Given H = {h1, h2, · · · , hi, · · · , hn} as
the input to the FAP layer, it outputs z = 1

n

∑n
i=1 hi.

II. NODE FEATURE COLLISION

We explain in detail the concept of node feature collision,
an undesirable artifact of the vanilla Graph-CNN network.
We also discuss the strategy adopted by us to eliminate this
problem.

Let g(X ,A) = σ(D̂− 1
2 ÂD̂− 1

2XW) denote the output of
the aggregator layer, for the inputs X (node feature matrix)
and A (adjacency matrix). In the transformer as well as the
two-stream network, there are three AGG blocks used in series

along with residual skip connections. We now justify the use
of residual skip connections. Assume the case where we do
not use these skip connections. Then the output would be
X ′ = g(g(g(X ,A),A),A). The series of AGG blocks in this
form encounters a peculiar issue in some cases. If there exist
two adjacent vertices in the graph whose neighbourhood is
exactly the same, or in other words, if two rows of Â are
identical, then the two vertices would get mapped on to the
same output point in the feature space by g. For instance, if
the input is a tetrahedron, then in the normalized adjacency
matrix, all the four vertices are adjacent to each other and
all four have exactly the same neighbourhood (note that Â
contains self loop for each vertex). Thus, all four points of the
tetrahedron get mapped to the same output after aggregation.
This effect is highly undesirable and we refer to it as node
feature collision. We solve this problem by making use of
residual skip connections from the input to the output. Thus,
the modification now becomes: h(X ,A) = g(X ,A) + X .
With the introduction of the skip connections we thus have
the output X ′ = h(h(h(X ,A),A),A).

III. LOSS FUNCTIONS

Let Ggt = (V, E ,F ,Pgt), Gnoisy = (V, E ,F ,Pnoisy), and
Gout = (V, E ,F ,Pout) denote the original ground truth mesh,
the noisy mesh, and the denoised mesh obtained using DMD-
Net, respectively. Let θgt, θnoisy , and θout denote the interior
angles of the vertices on their respective faces. If vertex v is
contained in face u, then θ(v, u) denotes the interior angle of
v on triangular face u. We define several loss functions whose
objective is to make Gout as close to Ggt as possible.

A. Vertex Loss

The vertex loss computes the mean Euclidean distance
between the corresponding vertices. It is defined in Equation
1, where, Pout(v) and Pgt(v) denote the feature vectors of
the vertex v.

Lvertex =
1

|V|
∑
v∈V

∥Pout(v)− Pgt(v)∥22 (1)

B. Normal Loss

The normal loss computes the mean angular deviation
between the normals of the corresponding faces. Let N̂out(s)
and N̂gt(s) denote the unit normal of the face s, where the
normal direction of a face is computed by taking the cross
product between two edges of the triangular face. The normal
loss is defined in Equation 2, where, ⟨·, ·⟩ denotes inner-
product.

Lnormal =
1

|F|
∑
s∈F

cos−1
(
⟨N̂out(s), N̂gt(s)⟩

)
(2)

C. Curvature Loss

We use two types of curvature loss: the mean curvature
loss and the Gaussian curvature loss. The mean curvature κH

is computed using the mean curvature normal operator and
the Gaussian curvature κG is computed using the Gaussian

4

curvature operator. Let N (v) denote the neighbourhood of
vertex v in the graph and let NF (v) denote the set of faces that
contain the vertex v. Then the curvature values at v for the two
graphs Ggt and Gout are denoted by κH

out(v), κ
H
gt(v), κ

G
out(v),

and κG
gt(v). The mean curvatures are defined in Equations 3

and 4.

κH
out(v) =

1

4AMixed(v)

∥∥∥∥ ∑
u∈N (v)

wvu(Pout(v)− Pout(u))

∥∥∥∥
2

(3)

κH
gt(v) =

1

4AMixed(v)

∥∥∥∥ ∑
u∈N (v)

wvu(Pgt(v)−Pgt(u))

∥∥∥∥
2

(4)

Here, wvu =
∑

f∈Fvu
cotαf

vu denotes the cotangent weights,
in which, αf

vu is the interior angle of the vertex opposite to
edge vu in face f and Fvu is the collection of all faces that
contain edge vu. AMixed(v) denotes the augmented version of
the Voronoi region area of a vertex v. This augmentation takes
into account the case where the triangular faces of the mesh
are obtuse. The Gaussian curvatures are defined in Equations
5 and 6.

κG
out(v) =

1

AMixed(v)
(2π −

∑
u∈NF (v)

θout(v, u)) (5)

κG
gt(v) =

1

AMixed(v)
(2π −

∑
u∈NF (v)

θgt(v, u)) (6)

The two components of curvature loss are then defined in
Equation 7 and 8.

LH =
1

|V|
∑
v∈V

∥∥κH
out(v)− κH

gt(v)
∥∥
1

(
κH
gt(v)

)2

(7)

LG =
1

|V|
∑
v∈V

∥∥κG
out(v)− κG

gt(v)
∥∥
1

(
κG
gt(v)

)2

(8)

Here, ∥·∥1 is the absolute value operator. Finally we define the
total curvature loss as the average of the two curvature losses
in Equation 9.

Lcurvature = (γHLH + γGLG) (9)

Here, γH and γG are weights used for combining the two
curvatures. Based on distribution of objects in our dataset, we
choose γH = 10−6 and γG = 1.

D. Chamfer Loss

Let Vout and Vgt denote the vertex sets of the two graphs
and let Pout(v) and Pgt(v) denote the features of the vertex
v in the two graphs. Then the Chamfer loss is defined in
Equation 10

Lchamfer =
1

|Vout|
∑

u∈Vout

min
v∈Vgt

∥Pout(u)− Pgt(v)∥22

+
1

|Vgt|
∑

v∈Vgt

min
u∈Vout

∥Pout(u)− Pgt(v)∥22 (10)

E. Feature Extractor Loss

The output of the feature extractor block is a matrix of size
n×5 which contains the estimate of normals and curvatures for
each vertex. Let N̂fe(v), κH

fe(v), and κG
fe(v) be the normal,

the mean curvature and the Gaussian curvature respectively
estimated by the feature extractor for vertex v. Let N̂gt(v),
κH
gt(v)(v), and κG

gt(v) be the normal, the mean curvature and
the Gaussian curvature respectively of vertex v in the original
ground-truth mesh. The feature extractor loss is then given in
Equation 11

LFE =
1

|V|
∑
v∈V

(∥∥∥N̂fe(v)− N̂gt(v)
∥∥∥2
2

+
∥∥κH

fe(v)− κH
gt(v)

∥∥2
2
+

∥∥κG
fe(v)− κG

gt(v)
∥∥2
2

)
(11)

F. Loss function weights

For training our network, we use a linear combination of
the loss functions described above.The weights used for vertex
loss, normal loss, curvature loss, chamfer loss and the feature
extractor loss are λV = 1, λN = 0.2, λκ = 0.01, λC = 0.05
and λFE = 1, respectively.

We define several loss functions whose objective is to make
Gout as close to Ggt as possible. In order to get Pout close
to Pgt, the natural loss function to use would be a metric
that compares the distance between the corresponding pair of
vertices in the two graphs. In cases where the correspondence
between vertices is known, we can directly use the vertex-
wise Euclidean distance and then average them over all the
vertices. We use this loss and call it vertex loss. However,
in cases where the correspondence between the vertices of
the two graphs is not known, it is appropriate to use distance
metric defined between two sets as the loss function, such as,
Hausdorff distance, Chamfer distance, Earth mover’s distance,
etc. We include the Chamfer loss in our framework.

It might be argued that, since in DMD-Net the correspon-
dence between vertices is preserved throughout, what is the
need for using Chamfer distance? A response to this argument
might be to note that while performing denoising using a
deep learning framework, the network can contain components
that may destroy the correspondence. For instance, one can
conceive of an autoencoder which obtains a latent code for
the entire graph in the encoding stage, thereby destroying
all the structure, and while decoding, it might output a fixed
number of vertices thereby changing the number of vertices in
the two graphs. There could be many other such possibilities
that destroy the correspondence. In such cases, vertex loss
would fail. Hence, for the sake of making our framework more
general and robust to these possibilities, we allow the use of
both Chamfer loss and Vertex loss.

In the absence of original correspondence, we can still
obtain a correspondence by solving the assignment problem
through cost minimization. Once a correspondence is obtained,
many other loss functions can further be used. For instance,
comparing the length of edges, area of faces, location of
centroids, direction of normal of faces, laplacian of vertices,

5

TABLE I
TRAINING SCHEME - ABLATION STUDY.

Model
test-intra test-inter

Vertex
(×10−4)

Normal
(degrees)

Chamfer
(×10−4)

Vertex
(×10−4)

Normal
(degrees)

Chamfer
(×10−4)

Joint 3.917 25.458 2.028 3.717 25.184 2.035
Alter 5.112 26.458 2.46 4.882 26.056 2.459

2-Phase 3.987 26.216 2.097 3.937 25.722 2.155

U-FE 4.768 25.767 2.399 5.007 25.387 2.544

curvature of vertices, etc. However, in spite of these several
possibilities, we use only the loss functions that enforce the
vertex locations, face normals, and curvatures of the output
denoised mesh to be aligned with that of the ground-truth
mesh.

IV. ABLATION STUDIES

We conduct several ablation studies, where, we devise
several variants of the proposed approach and show that the
proposed approach outperforms all the variants. This estab-
lishes the importance of each component in our network. In all
of our ablation studies, we train the networks on mixed noise,
that is, we randomly choose the noise type and the noise level
in each iteration. For the depth ablation we train all the variants
for 200 epochs. For the rest of the ablation studies, we train all
the variants for 60 epochs. Except the loss ablation study and
the training scheme ablation study, all other ablation studies
use a linear combination of loss functions with the following
weights: λV = λN = λκ = λFE = λC = 1

A. Training Scheme Ablation

The loss functions discussed in Section III can be segregated
into two categories. The first category consists of the feature
extractor loss which provides feedback solely to the feature
extractor. The second category consists of the rest of the loss
functions which provide feedback to the entire network. Thus,
this segregation, naturally opens the possibility of various
different competing training schemes as below.
• Joint Optimization (Joint). The final loss function is a linear
combination of all the loss functions. All the components of
the network are jointly trained using this final loss function.
In this case λV = λN = λκ = λFE = λC = 1.
• Alternating Optimization (Alter). The training alternates
between training the feature extractor and training the rest
of the network. In odd iterations, the feature extractor is
trained using the feature extractor loss while the rest of the
network is frozen. We thus have, λFE = 1 and λV = λN =
λκ = λC = 0. In the even iterations, the feature extractor is
frozen while the rest of the network is trained using the loss
functions in the second category. We thus have λFE = 0 and
λV = λN = λκ = λC = 1.
• Two Phase Optimization (2-Phase). The training process is
divided into two phases: the pre-training phase and the post-
training phase. In the pre-training phase the feature extractor
is trained for several epochs keeping the rest of the network
frozen, with the following weights of loss functions λFE = 1
and λV = λN = λκ = λC = 0. In the post-training phase the

TABLE II
DROPOUT RATE - ABLATION STUDY.

Model
test-intra test-inter

Vertex
(×10−4)

Normal
(degrees)

Chamfer
(×10−4)

Vertex
(×10−4)

Normal
(degrees)

Chamfer
(×10−4)

Dr = 0 3.917 25.458 2.028 3.717 25.184 2.035
Dr = 0.2 101.777 45.86 17.912 98.108 46.778 18.743

Dr = 0.35 94.623 47.578 19.767 95.461 47.836 21.056

Dr = 0.5 220.129 47.905 33.388 242.294 49.462 37.828

TABLE III
GRAPH ATTENTION NETWORKS - ABLATION STUDY.

Model
test-intra test-inter

Vertex
(×10−4)

Normal
(degrees)

Chamfer
(×10−4)

Vertex
(×10−4)

Normal
(degrees)

Chamfer
(×10−4)

With Attention 27.881 28.689 6.845 31.399 28.493 7.974

Without Attention 3.917 25.458 2.028 3.717 25.184 2.035

rest of the network is trained for the remaining epochs keeping
the feature extractor frozen, in which case, the loss function
weights are λFE = 0 and λV = λN = λκ = λC = 1.
• Unsupervised Feature Extraction (U-FE). The feature ex-
tractor loss is switched off in this case. The feature extractor
receives feedback from rest of the loss functions. Since the
feature extractor loss is disabled, the supervised training with
local features does not occur. Hence, the feature extraction
step becomes an unsupervised process. The weights of the
loss functions are λFE = 0 and λV = λN = λκ = λC = 1.

In this ablation study, we use a pair of two-stream networks
in both the feature extractor as well as the denoiser. As
visible in Table I, the joint optimization scheme outperforms
the rest of the training schemes. From now on we use joint
optimization for the remaining ablation studies.

B. Dropout Rate Ablation

In this study we include dropout layer in our network
after each ReLU function. We experiment with four different
dropout rate Dr: (a) Dr = 0.5, (b) Dr = 0.35, (c) Dr = 0.2,
and (d) Dr = 0. In Table II, we find that including dropout
layer worsens the performance. Therefore, we do not include
dropout layers in our network.

C. Graph Attention Networks Ablation

We test the effect of including graph attention network in
the graph aggregation layer. We find in Table III, that, the in-
clusion of graph attention network degrades the performance.
Hence, we exclude graph attention network from the proposed
approach.

D. Structure Ablation

In this study we modify the structure of our network in
various ways and show that our network in its current form
performs the best. We devise the following variants:
• FGT-8. This is the architecture we propose in our work.
In this method, the noisy input mesh is combined with the
estimated local features before being transformed by the
transformer.

6

(a) (b) (c) (d) (e) (f) (g) (h1) (h2)

Fig. 2: Output of loss ablation variants on the cup model. (a) Noisy, (b) Original, (c) With All, (d) Without Vertex, (e) Without Normal, (f) Without Curvature,
(g) Without Chamfer, (h1) Without Vertex and Chamfer, and (h2) Without Vertex and Chamfer (zoomed-out). The figures from (a)-(h1) are all under the same
camera setting. (h2) is the zoomed out version of (h1).

TABLE IV
NETWORK STRUCTURE - ABLATION STUDY.

Model
test-intra test-inter

Vertex
(×10−4)

Normal
(degrees)

Chamfer
(×10−4)

Vertex
(×10−4)

Normal
(degrees)

Chamfer
(×10−4)

FGT-8 3.917 25.458 2.028 3.717 25.184 2.035
FGT-3 4.506 26.396 2.224 4.306 25.917 2.14

W/O T 6.112 26.328 2.849 5.588 25.994 2.696

MT 5.586 26.366 2.653 5.521 26.097 2.643

DO-2S 5.398 26.224 2.649 4.967 25.878 2.548

DO-1S 6.097 27.356 2.827 6.02 26.801 2.888

FGT-1S 9.62 28.368 3.969 9.101 27.963 3.654

• FGT-3. FGT-3 is similar in structure to FGT-8 except that,
in this method, the noisy input mesh is directly passed to the
transformer without being combined with the estimated local
features.
• Without Transformer (W/O T). Here we eliminate the trans-
former. The combination of the local features and the noisy
mesh are directly passed to the primal stream of the denoiser.
• Multiple Transformer (MT). Here instead of computing a sin-
gle transformation matrix, the transformer computes a cascade
of transformations which is then applied to the combination
of noisy mesh and the estimated features.
• Denoiser Only - Two Stream (DO-2S). Here we eliminate
both the feature extractor as well as the transformer. The noisy
mesh is directly fed to both the streams of the denoiser. The
purpose of this network is to validate the use of the feature
extractor and transformer in the FGT paradigm.
• Denoiser Only - Single Stream (DO-1S). This is same as
the Denoiser Only (Two Stream) except that now the denoiser
contains only a single stream. This also implies that the two-
stream network does not contain the primal dual fusion block.
The purpose of this network is to test how well a vanilla graph
neural network works on the mesh denoising task.
• FGT - Single Stream (FGT-1S). This is similar in structure to
the proposed approach FGT-8, the only difference being that
both the denoiser and the feature extractor contain a single
stream. The purpose of this network is to validate the use of
doing aggregation in both primal and dual graph.

The comparison is shown in Table IV. We find that the
proposed network FGT-8 performs the best. We use this
architecture in the consequent ablation studies.

E. Loss Ablation

In this study we experiment with the weights of several loss
functions. This study is conducted to find out the relevance

of each loss function. Table V shows the results for various
different configurations. The first row (With All) refers to
the case where all the loss functions are used. In the second
row (Without Vertex) when we drop only the vertex loss, we
observe that all the three metrics degrade, thereby indicating
the significance of vertex loss. When we drop only the normal
loss (Without Normal), we observe significant improvement in
two metrics but large degradation in the normal metric. When
we drop curvature loss (Without Curvature) or chamfer loss
(Without Chamfer), we do not see significant change in the
three metrics. This indicates that chamfer loss and curvature
loss are not of very high significance. When we drop both
vertex loss and chamfer loss, we see a very huge jump in
the vertex and chamfer metric, indicating that normal loss
alone is not sufficient. Based on these results and some further
experimentation, we arrive at the final weights of the loss
functions: λV = 1, λN = 0.2, λκ = 0.01, λFE = 1, and
λC = 0.05. The visual comparison of these loss ablation
variants are made in Figure 2. In Figure 2(a)-(h1) the camera
setting are kept same during rendering. Figure 2(h2) is the
zoomed out image of 2(h1) to fit the entire object inside the
field of view of the camera. As visible in Figure 2(h2), in the
absence of both vertex loss and chamfer loss the output model
achieves shape similar to the ground truth. But the object is a
highly scaled up version hence the red patch in Figure 2(h1).
This scaling up of the object is the reason why the vertex
loss metric and the chamfer loss metric is very high in last
row of Table V. As can be seen in the Figure 2(e), DMD-Net
without normal loss performs very poorly, thereby signifying
the importance of normal loss though this variant achieves the
best vertex loss (Table V)

F. Depth Ablation

Depth is defined as the number of two-stream networks in
the denoiser. We perform this experiment with four different
variants: (a) DMD-Net 1. contains only one two-stream net-
works (b) DMD-Net 2. contains two two-stream networks (c)
DMD-Net 3. contains three two-stream networks (d) DMD-
Net 4. contains four two-stream networks In Table VI we
find out that DMD-Net 2 performs the best. Thus, based on
these results, we include only two two-stream networks in the
denoiser in our proposed approach. Note that in depth ablation
study all variant are trained for 200 epochs.

7

TABLE V
LOSS ABLATION - STUDY.

Model test-intra test-inter

Loss λV λN λκ λC
Vertex

(×10−4)

Normal
(degrees)

Chamfer
(×10−4)

Vertex
(×10−4)

Normal
(degrees)

Chamfer
(×10−4)

With All 1 1 1 1 4.624 25.98 2.337 4.353 25.725 2.264

Without Vertex 0 1 1 1 17.291 26.214 5.98 14.282 25.961 5.188

Without Normal 1 0 1 1 1.923 40.37 1.037 1.907 39.985 1.054
Without Curvature 1 1 0 1 4.585 26.493 2.342 4.551 25.966 2.379

Without Chamfer 1 1 1 0 4.601 26.086 2.359 4.406 25.844 2.286

Without Vertex and Chamfer 0 1 1 0 1.039× 1016 25.302 2.938× 1015 9.449× 1015 24.979 3.113× 1015

TABLE VI
DEPTH ABLATION - STUDY.

Model
test-intra test-inter

Vertex
(×10−4)

Normal
(degrees)

Chamfer
(×10−4)

Vertex
(×10−4)

Normal
(degrees)

Chamfer
(×10−4)

DMD-Net 1 5.498 26.12 2.487 4.968 25.8 2.369

DMD-Net 2 3.301 25.37 1.786 3.271 25.053 1.815
DMD-Net 3 4.968 26.004 2.393 4.755 25.509 2.362

DMD-Net 4 5.161 25.98 2.493 4.812 25.575 2.246

TABLE VII
COMPARISON OF THE PROPOSED APPROACH WITH AND WITHOUT SPATIAL

TRANSFORMER NETWORKS.

Model
test-intra test-inter

Vertex
(×10−4)

Normal
(degrees)

Chamfer
(×10−4)

Vertex
(×10−4)

Normal
(degrees)

Chamfer
(×10−4)

W STN 5.233 26.238 2.471 4.692 25.927 2.189

W/O STN 3.301 25.37 1.786 3.271 25.053 1.815

V. TRANSFORMATION EQUIVARIANCE

First we define what we mean by transformation equivari-
ance. Let T be a transformation operator, let D be a mesh
denoising algorithm and let G denote a mesh. We say that
D has T -equivariance, if for any given mesh, G we have
T (D(G)) = D(T (G)). That is, D is T -equivariant, if D and
T commute. We now discuss whether DMD-Net is equivariant
with respect to the following mentioned transformations.

1) Scaling Equivariance: Given a mesh, we first normalize
it to fit inside a unit cube. We then denoise it using DMD-Net
and unnormalize it back to it’s original scale. Thus DMD-
Net is scale equivariant as it first converts the mesh into a
cannonical scale before denoising.

A. Translation Equivariance

Before denoising, we shift the mesh to the origin and after
denoising, we shift it back to its original location. Thus, DMD-
Net is translation equivariant as the object is always aligned
to the origin.

DMD-Net is not rotation equivariant in the theoretical
sense. However, we try to establish rotation equivariance
by introducing concepts like rotation augmentation in the
dataset and the use of spatial transformer networks (STN).
In rotation augmentation, we augment the data during training
by randomly rotating the ground truth mesh before adding
noise. Spatial transformer networks (STN) was used by to
canonicalize the orientation of the object to establish rotation
invariance/equivariance in a deep learning framework that

Noisy Original DMD-Net DMD-Net+STN

Fig. 3: Visualization of the degree to which rotation equivariance is achieved
by DMD-Net and DMD-Net+STN. Objects in the first column are rotated
versions of each other. The second column refers to the corresponding ground
truth objects. Third column and the fourth column are the outputs of the
DMD-Net and DMD-Net+STN.

processes point clouds. We experiment with the idea of STN to
check whether it establishes equivariance in our case. Through
the use of a rotation equivariance test we evaluate the degree
to which rotation equivariance is established in DMD-Net by
these concepts. We first combine the test-intra and the test-
inter sets to obtain a single test set S. For the ith mesh
Gi in this set we choose γ = 5 random rotation operators,
the jth rotation operator denoted as Rij . We then compute
the following two meshes: GRD

ij = Rij(D(Gi)) and GDR
ij =

D(Rij(Gi)). We then find the distance between GRD
ij and GDR

ij

by evaluating the following loss metrics: Lvertex(GRD
ij ,GDR

ij),
Lnormal(GRD

ij ,GDR
ij), and Lchamfer(GRD

ij ,GDR
ij). We then

sum these loss metrics over the entire test set S as mentioned
in Equations 12, 13, and 14.

8

TABLE VIII
ROTATION EQUIVARIANCE TEST FOR MEASURING THE DEGREE TO WHICH

ROTATION EQUIVARIANCE IS ESTABLISHED.

Model
test intra + test inter

Vertex
(×10−4)

Normal
(degrees)

Chamfer
(×10−4)

Rotation Augmentation 0.704 5.998 0.501
Rotation Augmentation + STN 3.723 5.711 1.796

LRE
V =

1

γ|S|

|S|∑
i=1

γ∑
j=1

Lvertex(GRD
ij ,GDR

ij) (12)

LRE
N =

1

γ|S|

|S|∑
i=1

γ∑
j=1

Lnormal(GRD
ij ,GDR

ij) (13)

LRE
C =

1

γ|S|

|S|∑
i=1

γ∑
j=1

Lchamfer(GRD
ij ,GDR

ij) (14)

We conduct rotation equivariance test in two cases: (a)
Rotation Augmentation and (b) Rotation Augmentation with
Spatial Transformer Network. The results are depicted in Table
VIII. In terms of LRE

V and LRE
C , case (a) performs far better

but in terms of LRE
N , case(b) performs slightly better. Thus,

we discover that introducing STN does not provide significant
improvement but rather degrades the overall equivariance
metric. Moreover, in Table VII we assess the effect of adding
the STN by comparing the results on the mesh denoising task.
This table has a similar setting as that of the ablation studies
mentioned in Section IV. We conclude that introducing STN
does not establish rotation equivariance to a larger degree.
Moreover, it also degrades the performance on mesh denoising.
Thus, we do not include STN in the proposed approach
and only use rotation augmentation for rotation equivariance.
In Figure 3, we visually show that DMD-Net has rotation
equivariance to a large degree. The five rows in the figure
correspond to five different rotations. All the images are
rendered using a fixed camera position and orientation.

VI. SUPPLEMENTARY VIDEO

A brief audio-visual explanation of DMD-Net is included
in the supplementary video, which has been uploaded online
as an unlisted video on youtube. The video can be accessed
through the following link: https://youtu.be/wPJvUYqiL94

https://youtu.be/wPJvUYqiL94

	DMD-Net Architecture
	Feature Guided Transformer (FGT)
	Feature Extractor
	Transformer
	Denoiser
	Two-Stream Network
	Aggregator (AGG)
	Primal Dual Fusion (PDF)
	Primal to Dual (P2D)
	Dual to Primal (D2P)
	Dual Average Pooling (DAP)
	Feature Average Pooling (FAP)

	Node Feature Collision
	Loss Functions
	Vertex Loss
	Normal Loss
	Curvature Loss
	Chamfer Loss
	Feature Extractor Loss
	Loss function weights

	Ablation Studies
	Training Scheme Ablation
	Dropout Rate Ablation
	Graph Attention Networks Ablation
	Structure Ablation
	Loss Ablation
	Depth Ablation

	Transformation Equivariance
	Scaling Equivariance
	Translation Equivariance

	Supplementary Video

